
SRI CHANDRASEKHARENDRA SARASWATHI VISWA 
MAHAVIDYALAYA 

(University U/S 3 of UGC Act 1956) 
Accredited with “A” Grade by NAAC 

ENATHUR, KANCHIPURAM - 631561 
 

 

 

 

 

DEPARTMENT  :  EIE/MECHATRONICS 

YEAR/SEM  :  FOURTH / SEVENTH 

SUBJECT  :           VLSI DESIGN 

SUBJECT CODE :  EC7T1 

UNIT   :   I TO V 

 

 
 

 
Prepared by  

 
S. S. SARAVANA KUMAR, 

 
Assistant Professor 

Department of Electronics and Instrumentation Engineering 
Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya 

Enathur, Kanchipuram - 631561 

 



 
 

SEM VII  
VLSI DESIGN 

L T P C 

BRANCH : EIE 3 0 - 3 

CODE   : EC7T1 CATEGORY:  

(For Students admitted from 2014 onwards) 

 
PREREQUISITE: Electronic devices and circuits, Digital Electronics. 

AIM 

To introduces the technology and concepts of VLSI. 
Objectives : 

1.  To introduce MOS theory / Manufacturing Technology. 
2.  To study inverter / counter logic / stick / machine diagram / sequential circuits. 
3.  To study address / memory / arithmetic circuits. 
4.  To introduce FPGA architecture / principles / system design. 

Outcome: 
1.  Understand the principles of CMOS-VLSI technology. 
2.  Adequate knowledge about design issues involved at circuit, logic, layout, system level and to learn 

programmable logics. 

 
UNIT I INTRODUCTION TO VLSI AND MOS TRANSISTOR THEORY (9 Hours) 

 
Evolution of IC Technologies: SSI, MSI, LSI, VLSI, ULSI, and GLSI. The Moore ’s Law. 

MOS THEORY: The MOS as switch – nMOS and pMOS. CMOS logic and its features. The nMOS 

enhancement Transistor – Working and Characteristics. Threshold voltage and Body effect of MOS. MOS 

device design equations (First order effects). 

MOS INVERTERS: The CMOS inverter Transfer characteristics, Noise margin. The nMOS and pseudo -

nMOS inverter. The BiCMOS Inverter. The CMOS Transmission gate. 

 
UNIT II CMOS PROCESSING TECHNOLOGY AND LAYOUTS (9 Hours) 

 
Silicon Semiconductor fabrication technology, Fabrication of nMOS and CMOS (Basic n -WELL process). 

LAYOUTS AND DESIGN RULES: Layout based rules, Simple CMOS Stick Layout diagrams - Inverter, 

NAND/NOR gates and Multiplexer. Scaling: Constant Field, and Constant voltage. 

 
UNIT III        MOS CIRCUIT PERFORMANCE AND CMOS LOGIC CIRCUITS (9 Hours) 

 
Sheet Resistance definition, MOS device capacitances – model. Distributed RC effects. Switching 

characteristics - Rise time, Fall time, and Delay time. Stage ratio. Simple examples of Combinational and 

Sequential circuits using CMOS: NAND/ NOR gates, and Compound gates, Latches, and Registers.  

UNIT IV SUB SYSTEM DESIGN, AND TESTING (9 Hours) 

 

General System Design–Design of ALU subsystems, Adder and Multipliers Memories – Static RAM, Control 
Logic Implementation using PLA’s. Testing of VLSI circuits –Need for Testing, Fault models, and ATPG. 
Design for Testability (DFT)– Scan Based and Self-test approaches. 



 

UNIT V  PROGRAMMABLE LOGIC’S       (9 Hours) 

 
Basic ROM structures, PLAs, PALs, PLDs, Implementat ion of Traffic Light controller using PLD. FPGAs and 

CPLDs: XILINX and ALTERA series. 

 

COURSE OUTCOME 

The students should be able to: 
 
CO1. Understand the basic number system and Boolean algebra. CO2. Understand the basics of combinational and 

Sequential circuits. CO3. Know about Flip flops and their designing. 

CO4. Analyze about State reduction techniques and various hazards present in the circuit.  

CO5. Understanding the concepts of VHDL programming for designing Digital circuits. 

 
TEXT BOOKS 

1. Neil Weste and Kamran Eshraghian “Principles of CMOS VLSI Design “- Addison Wesley, 1998.. 

2. Charles H Roth, Jr. “Digital Systems Design using VHDL”- Thomson Learning, 2001.  

 
REFERENCE BOOKS 

1. VLSI Design Principles- John P. Uyemura, John Wiley,2002 

2. E. Fabricious , Introduction to VLSI design, McGraw-Hill 1990 

3. Wayne Wolf, Modern VLSI Design, Pearson Education 2003A. Anand Kumar, “Switching Theory and 
Logic Design” – PHI, 2nd Edition 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT - I 

INTRODUCTION TO VLSI AND MOS TRANSISTOR THEORY 

 

PRE MCQ: 

1. VLSI technology uses ________ to form integrated circuit. 
a) Transistor 

b) Switches 

c) Diodes 

d) Buffers 

 

2. Medium scale integration has ____________ 

a) ten logic gates 

b) fifty logic gates 

c) hundred logic gates 

d) thousands logic gates 

 

3. As die size shrinks, the complexity of making the photomasks ____________ 

a) decreases 

b) increases 

c) remains the same 

d) cannot be determined 

 

4.  ______ Architecture is used to design VLSI. 

a) system on a device 

b) single open circuit 

c) system on a circuit 

d) system on a chip 

 

5. In depletion mode, source and drain are connected by ____________ 

a) Vdd 

b) Vss 

c) Conducting Channel 

d) Insulating Channel 

 

6. In enhancement mode, device is in _________ condition 

a. insulating 

b. conducting 

c. partially conducting 

d. non conducting 



7. Inversion layer in enhancement mode consists of excess of ____________ 

a) positive carriers 

b) negative carriers 

c) both in equal quantity 

d) neutral carriers 

 

8. MOS transistors consist of which of the following? 

a) semiconductor layer 

b) metal layer 

c) layer of silicon-di-oxide 

d) all of the mentioned 

 

9. In MOS transistors _______________ is used for their gate. 

a) metal 

b) polysilicon 

c) silicon-di-oxide 

d) gallium 

 

10. The depletion mode n-MOS differs from enhancement mode n-MOS in: 

a) Channel Length 

b) Switching time 

c) Threshold voltage 

d) None of the mentioned 

 
THEORY: 

EVOLUTION OF IC TECHNOLOGIES: 

 
MOS (Metal Oxide Silicon) Transistor History 

1925: J. Lilienfeld proposed the basic principle of MOS FET (Field Effect Transistor). 1935: O. Heil proposed a 

similar structure. 

1962: P.K. Weimer (RCA) first placed pMOS and nMOS transistors on the same substrate. 

1963: Frank Wanlass (Fairchild) invented invertor, NOR and NAND CMOS gates. This invention starts the era of 

CMOS low power applications. 

1965: The first MOS calculator. 

1971: Emergence of nMOS-silicon gate technology. 

Note: Early research on MOS technology led to success of bipolar transistor. This in turns leads to a decline of interest 

in MOS transistor. 

1980: The market share of MOSFET exceeds bipolar device. 



 

Transistor was first invented by William. B. Shockley, Walter Brattain and John Bardeen of Bell laboratories. 

In 1961, first IC was introduced. 

Levels of Integration: 

• Small Scale Integration:- (10-100) transistors => Example: Logic gates 

• Medium Scale Integration:- (100-1000) => Example: counters 

• Large Scale Integration:- (1000-20000) => Example:8-bit chip 

• Very Large Scale Integration:- (20000-1000000) => Example:16 & 32 bit up 

• Ultra Large Scale Integration:- (1000000-10000000) => Example: Special processors, virtual reality 
machines, smart sensors 
 

Moore’s Law 

 
The number of transistors embedded on the chip doubles after every one and a half years. The number of 

transistors is taken on the y-axis and the years in taken on the x-axis. The diagram also shows the speed in MHz the 

graph given in figure also shows the variation of speed of the chip in MHz 

1. MOS TRANSISTOR THEORY 

 
A Metal-Oxide-Semiconductor (MOS) structure is created by superimposing several layers of conducting and 

insulating materials to form a sandwich-like structure. These structures are manufactured using a series of chemical 

processing steps involving oxidation of the silicon, selective introduction of dopants, and deposition and etching of 

metal wires and contacts. Transistors are built on nearly flawless single crystals of silicon, which are available as thin 

flat circular wafers of 15–30 cm in diameter. CMOS technology provides two types of transistors (also called 

devices): an n-type transistor (nMOS) and a p-type transistor (pMOS). Transistor operation is controlled by electric 

fields so the devices are also called Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) or simply 

FETs. Cross-sections and symbols of these transistors are shown. The n+ and p+ regions indicate heavily doped n- 

or p- type silicon. 

Basic starting material: Single crystal of silicon formed as wafers (4-inch, 6-inch, 8- inch, 12-inch). MOS 

structure is created by superposing several layers of conducting, insulating, and transistor-forming materials to 

create a sandwich-like structure by way of a series of chemical processing steps such as: oxidation of the silicon, 



diffusion of impurities  into silicon to give it certain conduction characteristics, and deposition and etching of 

aluminum on silicon to form interconnection. 

Two types of transistors 

 
nMOS: with negatively diffused (doped) source and drain on lightly p -doped substrate. pMOS: with positively 

diffused source and drain on lightly n-doped substrate. Four terminals of a transistor: Gate: usually formed by 

polycrystalline silicon (polysilicon for short). It is a control input that affects the flow of electrical current between 

source and drain. Source and Drain: Formed by diffusion. They are physically equivalent and the name assignment 

depends on the direction of current flow. Source provides charges. Drain  sinks charges. Substrate: the fourth terminal 

of MOS transistor and will be discussed later. Note that p-type transistor (pMOS) has n-doped substrate and n-type 

transistor (nMOS) has p- doped substrate. 

Each transistor consists of a stack of the conducting gate, an insulating layer of silicon dioxide (SiO2, better 

known as glass), and the silicon wafer, also called the substrate, body, or bulk. Gates of early transistors were built 

from metal, so the stack was called metaloxide- semiconductor, or MOS. Since the 1970s, the gate has been formed 

from polycrystalline silicon (polysilicon), but the name stuck. (Interestingly, metal gates reemerged in 2007 to 

solve materials problems in advanced manufacturing processes.) An nMOS transistor is built with a p-type body and 

has regions of n-type semiconductor adjacent to the gate called the source and drain. They are physically equivalent and 

for now we will regard them as interchangeable. The body is typically grounded. A pMOS transistor is just the 

opposite, consisting of p-type source and drain regions with an n-type body. In a CMOS technology with both flavors of 

transistors, the substrate is either n-type or p-type. The other flavor of transistor must be built in a special well in 

which dopant atoms have been added to form the body of the opposite type. 

MOS TRANSISTOR AS SWITCHES - NMOS AND PMOS SWITCHES 

 
The gate controls the flow of current between the source and the drain. The gate is a  control input: It 

affects the flow of electrical current between the source and drain. Consider an nMOS transistor. The body is 

generally grounded so the p–n junctions of the source and drain to body are reverse-biased. If the gate is also 

grounded, no current flows through the reverse-biased junctions. Hence, we say the transistor is OFF. If the gate 



voltage is raised, it creates an electric field that starts to attract free electrons to the underside of the Si–SiO2 

interface. If the voltage is raised enough, the electrons outnumber the holes and a thin region under the gate called 

the channel is inverted to act as an n-type semiconductor. Hence, a conducting path of electron carriers is formed 

from source to drain and current can flow. We say the transistor is ON. 

This allows us to treat the MOS transistors as simple on/off switches. For a pMOS transistor, the situation 

is again reversed. The body is held at a positive voltage. When the gate is also at a positive voltage, the source and 

drain junctions are reverse-biased and no current flows, so the transistor is OFF. When the gate voltage is lowered, 

positive charges are attracted to the underside of the Si–SiO2 interface. A sufficiently low gate voltage inverts the 

channel and a conducting path of positive carriers  is formed from source to drain, so the transistor is ON. Notice that 

the symbol for the pMOS transistor has a bubble on the gate, indicating that the transistor behavior is the opposite of 

the nMOS. 

 

 
The positive voltage is usually called VDD or POWER and represents a logic 1 value in digital circuits. In 

popular logic families of the 1970s and 1980s, VDD was set to 5 volts. Smaller, more recent transistors are unable to 

withstand such high voltages and have used supplies of 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, and so forth. The low 

voltage is called GROUND (GND) or VSS and represents a logic 0. It is normally 0 volts. 
 

 
In summary, the gate of an MOS transistor controls the flow of current between the  source and drain. 

Simplifying this to the extreme allows the MOS transistors to be viewed as  simple ON/OFF switches. When the gate of 

an nMOS transistor is 1, the transistor is ON and there is a conducting path from source to drain. When the gate is low, 

the nMOS transistor is  OFF and almost zero current flows from source to drain. A pMOS transistor is just the opposite, 

being ON when the gate is low and OFF when the gate is high. This switch model is illustrated in Figure 1.10, where g, 



s, and d indicate gate, source, and drain. This model will be our most  common one when discussing circuit behavior. 

Logic value system: 

1: Between 1.5 and 15 volts 

z: High Impedance (a circuit node not connecting to either Power or Ground) 0: Zero volts 

Strength of the “1” and “0” signals: 

Strength of a signal is measured by its ability to sink or source current. Power (PWR, VDD): Strongest 1. 

Ground (GND, VSS): Strongest 0. 

 
By convention, current is sourced from Power, and Ground sinks current. nMOS switch  (N-SWITCH) is 

closed or ON if the drain and the source are connected . This occurs when there is a “1” on the gate . 

Pass a good 0. Pass a poor 1. 

pMOS switch (P-SWITCH) is closed or ON when there is a “0” on the gate. Pass a good 1 and Pass a poor 0. 

 

CMOS LOGIC AND ITS FEATURES 

 

Inverter 

Figure shows the schematic and symbol for a CMOS inverter or NOT gate using one  nMOS transistor and one 

pMOS transistor. The bar at the top indicates VDD and the triangle at the bottom indicates GND. When the input A is 

0, the nMOS transistor is OFF and the pMOS transistor is ON. Thus, the output Y is pulled up to 1 because it is 

connected to VDD but not to GND. Conversely, when A is 1, the nMOS is ON, the pMOS is OFF, and Y is pulled 

down to ‘0.’ This is summarized in Table. 

 

“ Input 0 makes Output 1” suggests a P-SWITCH connected from a “1” source (VDD) to the output. “ Input 1 makes 
Output 0” suggests an N-SWITCH connected from a “0” source (VSS) to the output. 
 

Fig. Inverter Circuit 

 

CMOS Logic Gates 

The inverter and NAND gates are examples of static CMOS logic gates, also called  complementary CMOS 



gates. In general, a static CMOS gate has an nMOS pull-down network to connect the output to 0 (GND) and pMOS 

pull-up network to connect the output to 1 (VDD), as shown in Figure. The networks are arranged such that one is ON 

and the other OFF for any input pattern. 

 

 
 

Combinational Logic 

 
The pull-up and pull-down networks in the inverter each consist of a single transistor. The NAND gate uses a 

series pull-down network and a parallel pullup network. More elaborate networks are used for more complex gates. 

Two or more transistors in series are ON only if all of the series transistors are ON. Two or more transistors in parallel 

are ON if any of the parallel transistors are ON. This is illustrated in Figure 1.15 for nMOS and pMOS transistor pairs. 

By using combinations of these constructions, CMOS combinational gates can be constructed. Although such static 

CMOS gates are most widely used, explores alternate ways of building  gates with transistors. 

 

 
In general, when we join a pull-up network to a pull-down network to form a logic gate as shown in Figure, 

they both will attempt to exert a logic level at the output. The possible levels at the output are shown in Table. From 

this table it can be seen that the output of a CMOS logic gate can be in four states. The 1 and 0 levels have been 

encountered with the inverter and NAND gates, where both the pull-up and pull-down is OFF and the other structure is 



ON. When both pull-up and pull-down are OFF, the high impedance or floating Z output state results. This  is of 

importance in multiplexers, memory elements, and tristate bus drivers. The crowbarred (or contention) X level exists 

when both pull-up and pull-down are simultaneously turned ON. Contention between the two networks results in an 

indeterminate output level and dissipates  static power. It is usually an unwanted condition. 

NAND Gate 

Figure shows a 2-input CMOS NAND gate. It consists of two series nMOS transistors  between Y and GND 

and two parallel pMOS transistors between Y and VDD. If either input A or B is 0, at least one of the nMOS 

transistors will be OFF, breaking the path from Y to GND. But at least one of the pMOS transistors will be ON, 

creating a path from Y to VDD. Hence, the output Y will be 1. If both inputs are 1, both of the nMOS transistors 

will be ON and both of the pMOS transistors will be OFF. Hence, the output will be 0. The truth table is  given in Table 

and the symbol is shown in Figure (b). Note that by DeMorgan ’s Law, the inversion bubble may be placed on either 

side of the gate. In the figures in this book, twolines  intersecting at a T-junction are connected. 

 

 

NOR Gate 

 
A 2-input NOR gate is shown in Figure. The nMOS transistors are in parallel to pull the output low when either input 

is high. The pMOS are in series to pull the output high when both inputs are low, as indicated in Table. The output is 

never crowbarred or left floating. 



 



Compound Gates 

 
A compound gate performing a more complex logic function in a single stage of logic is formed by using a 

combination of series and parallel switch structures. For example, the derivation of the circuit for the function Y = (A · 

B) + (C · D) is shown in Figure. This function is sometimes called AND-OR-INVERT-22, or AOI22 because it 

performs the NOR of a pair of 2-input ANDs. For the nMOS pull-down network, take the un-inverted expression 

((A · B) 

+ (C · D)) indicating when the output should be pulled to ‘0.’ The AND expressions (A · B) and (C · D) may be 

implemented by series connections of switches, as shown in Figure 1.18(a). Now ORing the result requires the parallel 

connection of these two structures, which is shown in Figure 1.18(b). 

 

 
For the pMOS pull-up network, we must compute the complementary expression using  switches that turn on 

with inverted polarity. By DeMorgan’s Law, this is equivalent to interchanging AND and OR operations. 

 



Hence, transistors that appear in series in the pull-down network must appear in parallel in the pull-up network. 

Transistors that appear in parallel in the pulldown network must appear in series in the pull-up network. This principle 

is called conduction complements and has  already been used in the design of the NAND and NOR gates. In the pull-up 

network, the parallel combination of A and B is placed in series with the parallel combination of C and D. This 

progression is evident in Figure (c) and Figure (d). Putting the networks together yields the full schematic (Figure 

(e)). 

Multiplexers 

 
Multiplexers are key components in CMOS memory elements and data manipulation structures. A multiplexer 

chooses the output from among several inputs based on a select signal. A 2-input, or 2:1 multiplexer, chooses input D0 

when the select is 0 and input D1 when the select is 1. The truth table is given in Table 1.6; the logic function is Y = S 

· D0 + S · D1. 

 

 
Two transmission gates can be tied together to form a compact 2-input multiplexer, as shown in Figure (a). The 

select and its complement enable exactly one of the two transmission  gates at any given time. The complementary 

select S is often not drawn in the symbol, as shown in Figure (b). 

Again, the transmission gates produce a nonrestoring multiplexer. We could build a  restoring, inverting 

multiplexer out of gates in several ways. One is the compound gate of Figure 1.18(e), connected as shown in Figure 

(a). Another is to gang together two tristate inverters, as shown in Figure (b). Notice that the schematics of these two 

approaches are nearly identical, save that the pull-up network has been slightly simplified and permuted in Figure (b). 

This is possible because the select and its complement are mutually exclusive. The tristate  approach is slightly more 

compact and faster because it requires less internal wire. Again, if the complementary select is generated within the 

cell, it is omitted from the symbol 

Memory-Latches and Registers 

 
Sequential circuits have memory: their outputs depend on both current and previous  inputs. Using the 

combinational circuits developed so far, we can now build sequential circuits such as latches and flip-flops. These 

elements receive a clock, CLK, and a data input, D, and produce an output, Q. A D latch is transparent when CLK = 1, 



meaning that Q follows D. It becomes opaque when CLK = 0, meaning Q retains its previous value and ignores 

changes in D. 
 

 
D latch built from a 2-input multiplexer and two inverters is shown in Figure (a). The multiplexer can be built 

from a pair of transmission gates, shown in Figure (b), because the inverters are restoring. This latch also produces a 

complementary output, Q. When CLK = 1, the latch is transparent and D flows through to Q (Figure (c)). When CLK 

falls to 0, the latch becomes opaque. A feedback path around the inverter pair is established (Figure (d)) to hold the 

current state of Q indefinitely. The D latch is also known as a level-sensitive latch because the state of the output is 

dependent on the level of the clock signal, as shown in Figure (e). The latch shown is a positive-level-sensitive latch, 

represented by the symbol in Figure (f ). By inverting the control connections to the multiplexer, the latch becomes 

negative-level-sensitive. 

2. NMOS ENHANCEMENT TRANSISTOR 

 
The MOS transistor is a majority-carrier device in which the current in a conducting channel between the 

source and drain is controlled by a voltage applied to the gate. In an nMOS transistor, the majority carriers are electrons; 

in a pMOS transistor, the majority carriers are holes. The behavior of MOS transistors can be understood by first 

examining an isolated MOS structure with a gate and body but no source or drain. Figure shows a simple MOS 

structure. The top layer of the structure is a good conductor called the gate. Early transistors used metal gates. 

Transistor gates soon changed to use polysilicon, i.e., silicon formed from many small crystals. 
 



 
The middle layer is a very thin insulating film of SiO2 called the gate oxide. The bottom layer is the doped 

silicon body. The figure shows a p-type body in which the carriers are holes. The body is grounded and a voltage is 

applied to the gate. The gate oxide is a good insulator so almost zero current flows from the gate to the body. In 

Figure (a) , a negative voltage is applied to the gate, so there is negative charge on the gate. The mobile positively 

charged holes are attracted to the region beneath the gate. This is called the accumulation mode. In Figure (b), a small 

positive voltage is applied to the gate, resulting in some positive charge on the gate. The holes in the body are repelled 

from the region directly beneath the gate, resulting in a depletion region forming below the gate. In Figure (c), a higher 

positive potential exceeding a critical threshold voltage Vt is applied, attracting more  positive charge to the gate. The 

holes are repelled further and some free electrons in the body are attracted to the region beneath the gate. This  

conductive layer of electrons in the p-type body is called the inversion layer. The threshold voltage depends on the 

number of dopants in the body and the thickness tox of the oxide. It is usually positive, as shown in this example, but  

can be engineered to be negative. 

 
Figure shows an nMOS transistor. The transistor consists of the MOS stack between two n-type regions 

called the source and drain. In Figure (a), the gate-to-source voltage Vgs is  less than the threshold voltage. The source 

and drain have free electrons. The body has free holes but no free electrons. Suppose the source is grounded. The 

junctions between the body



and the source or drain are zero-biased or reverse-biased, so little or no current flows. We say the transistor is OFF, 

and this mode of operation is called cutoff. It is often convenient to  approximate the current through an OFF 

transistor as zero, especially in comparison to the current through an ON transistor. Remember, however, that small 

amounts of current leaking through OFF transistors can become significant, especially when multiplied by millions 

or billions of transistors on a chip. In Figure (b), the gate voltage is greater than the threshold  voltage. Now an 

inversion region of electrons (majority carriers) called the channel connects the source and drain, creating a 

conductive path and turning the transistor ON. The number of carriers and the conductivity increases with the gate 

voltage. The potential difference between drain and source is Vds = Vgs □ Vgd . If Vds = 0 (i.e., Vgs = Vgd), there 

is no electric field tending to push current from drain to source. 

When a small positive potential Vds is applied to the drain (Figure (c)), current Ids  flows through the 

channel from drain to source.2 This mode of operation is termed linear, resistive, triode, nonsaturated, or 

unsaturated; the current increases with both the drain voltage and gate voltage. If Vds becomes sufficiently large that 

Vgd < Vt , the channel is no longer inverted near the drain and becomes pinched off (Figure 2.3(d)). However, 

conduction is still brought about by the drift of electrons under the influence of the posit ive drain voltage. As 

electrons reach the end of the channel, they are injected into the depletion region near the drain  and accelerated toward 

the drain. Above this drain voltage the current Ids is controlled only by  the gate voltage and ceases to be influenced by 

the drain. This mode is called saturation. 

In summary, the nMOS transistor has three modes of operation. If Vgs < Vt , the  transistor is cutoff 

(OFF). If Vgs > Vt , the transistor turns ON. If Vds is small, the transistor acts as a linear resistor in which the 

current flow is proportional to Vds. If Vgs > Vt and Vds is large, the transistor acts as a current source in which the 

current flow becomes independent of Vds . The pMOS transistor operates in just the opposite fashion. 

Long-Channel I-V Characteristics & MOS device design equations (First order effects) 

 
As stated previously, MOS transistors have three regions of operation: 

 
 Cutoff or subthreshold region 

 Linear region 

 Saturation region 

The long-channel model assumes that the current through an OFF transistor is 0. When a transistor turns ON 

(Vgs > Vt), the gate attracts carriers (electrons) to form a channel. The electrons drift from source to drain at 

a rate proportional to the electric field between these regions. Thus, we can compute currents if we know the 

amount of charge in the channel and the rate at which it moves. We know that the charge on each plate of a 

capacitor is Q = CV.We can model the gate as a parallel plate capacitor with capacitance proportional to area 

over thickness. The gate has length L and width W and the oxide thickness is tox, as shown in Figure. 



 

 
 

 
The ideal (first order) equations describing the behaviour of an nMOS device in the three regions are, 

 

 
Figure (a) shows the I-V characteristics for the transistor. According to the first-order model, the current is zero 

for gate voltages below Vt. For higher gate voltages, current increases  linearly with Vds for small Vds . As Vds reaches 

the saturation point Vdsat = VGT, current rolls off and eventually becomes independent of Vds when the transistor is 

saturated. We will later see that the Shockley model overestimates current at high voltage because it does not  account 

for mobility degradation and velocity saturation caused by the high electric fields. pMOS transistors behave in the 

same way, but with the signs of all voltages and currents  reversed. The I-V characteristics are in the third quadrant, as 

shown in Figure (b). To keep notation simple in this text, we will disregard the signs and just remember that the current 



flows from source to drain in a pMOS transistor. The mobility of holes in silicon is typically lower than that of 

electrons. This means that pMOS transistors provide less current than nMOS transistors of comparable size and hence 

are slower. 

 
The parameters that affect the magnitude of Ids, 
 

 The distance between source and drain (channel length) and the channel width 

 The threshold voltage 

 The thickness of the gate oxide layer 

 The dielectric constant of the gate insulator. 

 The carrier (electron or hole) mobility 

THRESHOLD VOLTAGE 

 

So far, we have treated the threshold voltage as a constant. However, Vt increases with  the source voltage, 

decreases with the body voltage, decreases with the drain voltage, and  increases with channel length. Until now, we 

have considered a transistor to be a three-terminal device with gate, source, and drain. However, the body is an implicit 

fourth terminal. When a voltage Vsb is applied between the source and body, it increases the amount of charge 

required to invert the channel, hence, it increases the threshold voltage. The threshold voltage can be  modeled as 

 

where Vt 0 is the threshold voltage when the source is at the body potential, is the surface potential at threshold and 

γ is the body effect coefficient, typically in the range 0.4 to 1 V1/2. In turn, these depend on the doping level in the 

channel, NA. The body effect further degrades  the performance of pass transistors trying to pass the weak value (e.g., 

nMOS transistors passing a ‘1’). 

Vt is largely determined at the time of fabrication, rather than by circuit conditions, like  Ids. Most are related to 

the material properties. For example, material parameters that effect Vt  include: The gate conductor material (poly vs. 

metal). The gate insulation material (SiO2). The thickness of the gate material. The channel doping concentration. From 

equations, threshold voltage may be varied by changing, 

 The doping concentration (NA). 

 The oxide capacitance (Cox) 

 Surface state charge (Qfc). 

Also it is often necessary to adjust Vt. Two methods are common. Change Qfc by introducing a small doped region at 

the oxide/substrate interface via ion implantation. Change Cox by using  a different insulating material for the gate. 

 

BODY EFFECT OF MOS 

 



In digital circuits, the substrate is usually held at zero. The sources of n-channel devices, for example, are also 

held at zero, except in cases of series connections, e.g., as shown in figure. The source-to-substrate (Vsb) may increase 

at this connections, e.g. VsbN1= 0 but VsbN2/= 0 Vsb adds to the channel-substrate potential, 

 
 

Moreover, when the source of the nMOS transistor rises, Vsb becomes nonzero. This nonzero source to body 

potential introduces the body effect that increases the threshold voltage. Using the data from the example in that 

section, a pass transistor driven with VDD = 1 V would produce an output of only 0.65 V, potentially violating the 

noise margins of the next stage. Unlike ideal switches, MOS transistors pass some voltage levels better than others. 

An nMOS transistor passes 0s well, but only pulls up to VDD – Vtn when passing 1s. The pMOS passes 1s well, but 

only pulls down to |Vtp| when passing 0s. This threshold drop is exacerbated by the body effect, which increases the 

threshold voltage when the source is at a different potential than the body. 

3. MOS INVERTERS 

 

CMOS INVERTER TRANSFER CHARACTERISTICS 

 
Digital circuits are merely analog circuits used over a special portion of their range. The  DC transfer 

characteristics of a circuit relate the output voltage to the input voltage, assuming the input changes slowly enough 

that capacitances have plenty of time to charge or discharge. Specific ranges of input and output voltages are 

defined as valid 0 and 1 logic levels. This  section explores the DC transfer characteristics of CMOS gates and pass 

transistors. 

The DC transfer function (Vout vs. Vin) for the static CMOS inverter is shown in  Figure. We begin with 

Table, which outlines various regions of operation for the n- and p- transistors. In this table, Vtn is the threshold 

voltage of the n-channel device, and Vtp is the threshold voltage of the p-channel device. Note that Vtp is negative. 

The equations are given both in terms of Vgs /Vds and Vin /Vout. As the source of the nMOS transistor is 

grounded, Vgsn = Vin and Vdsn = Vout. As the source of the pMOS transistor is tied to VDD, Vgsp = Vin – VDD 

and Vdsp = Vout – VDD. 



 
 

The objective is to find the variation in output voltage (Vout) as a function of the input voltage (Vin). This may 

be done graphically. Given Vin, we must find Vout subject to the constraint that Idsn =|Idsp|. For simplicity, we assume 

Vtp = –Vtn and that the pMOS transistor is 2–3 times as wide as the nMOS transistor so □n = □p. The plot shows Idsn 

and Idsp in terms of Vdsn and Vdsp for various values of Vgsn and Vgsp. Figure (b) shows the same plot of Idsn  and 

|Idsp| now in terms of Vout for various values of Vin. The possible operating points of the  inverter, marked with dots, 

are the values of Vout where Idsn = |Idsp| for a given value of Vin. These operating points are plotted on Vout vs. Vin 

axes in Figure (c) to show the inverter DC transfer characteristics. The supply current IDD = Idsn = |Idsp| is also plotted 

against Vin in Figure (d) showing that both transistors are momentarily ON as Vin passes through voltages  between 

GND and VDD, resulting in a pulse of current drawn from the power supply. The operation of the CMOS inverter 

can be divided into five regions indicated on Figure c). The state of each transistor in each region is shown in Table. In 

region A, the nMOS transistor is OFF so the pMOS transistor pulls the output to VDD. In region B, the nMOS 

transistor starts to turn ON, pulling the output down. In region C, both transistors are in saturation. Notice that ideal 

transistors are only in region C for Vin = VDD/2 and that the slope of the transfer curve in this example is – in this 

region, corresponding to infinite gain. Real transistors have finite output resistances on account of channel length 

modulation, and thus have finite slopes over a broader region C. In region D, the pMOS transistor is partially ON and 

in region E, it is completely OFF, leaving the nMOS transistor to pull the output down to GND. Also notice that the 



inverter’s current consumption is ideally zero, neglecting leakage, when the input is within a threshold voltage of the 

VDD or GND rails. This feature is important for low-power operation. 

 

 
Beta Ratio Effects 

 
Figure shows simulation results of an inverter from a 65 nm process. The pMOS transistor is twice as wide as 

the nMOS transistor to achieve approximately equal betas. Simulation matches the simple models reasonably well, 

although the transition is not quite as  steep because transistors are not ideal current sources in saturation. The crossover 

point where Vinv = Vin = Vout is called the input threshold. Because both mobility  and the magnitude of the threshold 

voltage decrease with temperature for nMOS and pMOS transistors, the input threshold of the gate is only weakly 

sensitive to temperature. 

We have seen that for □p = □n, the inverter threshold voltage Vinv is VDD/2. This  may be desirable 

because it maximizes noise margins and allows a capacitive load to charge and discharge in equal times by providing 

equal current source and sink capabilities. Inverters  with different beta ratios r = □p /□n are called skewed inverters 

[Sutherland99]. If r > 1, the inverter is HI-skewed. If r < 1, the inverter is LO-skewed. If r = 1, the inverter has normal 

skew or is unskewed. 

A HI-skew inverter has a stronger pMOS transistor. Therefore, if the input is VDD /2, we would expect the 

output will be greater than VDD /2. In other words, the input threshold must be higher than for an unskewed 

inverter. Similarly, a LO-skew inverter has a weaker pMOS transistor and thus a lower switching threshold. 

 

Figure explores the impact of skewing the beta ratio on the DC transfer characteristics. As the beta ratio is 



changed, the switching threshold moves. However, the output voltage transition remains sharp. Gates are usually 

skewed by adjusting the widths of transistors while maintaining minimum length for speed. However, velocity 

saturated inverters are more sensitive to skewing because their DC transfer characteristics are not as sharp. DC 

transfer characteristics of other static CMOS gates can be understood by collapsing the gates into an equivalent 

inverter. Series transistors can be viewed as a single transistor of greater length. If only one of several parallel 

transistors is ON, the other transistors can be ignored. If several parallel transistors are ON, the collection can be 

viewed as a single transistor of greater width. 

 

NOISE MARGIN 

 
Noise margin is closely related to the DC voltage characteristics. This parameter allows  you to determine the 

allowable noise voltage on the input of a gate so that the output will not be corrupted. The specification most 

commonly used to describe noise margin (or noise immunity) uses two parameters: the LOW noise margin, NML, 

and the HIGH noise margin, NMH. With reference to Figure, NML is defined as the difference in maximum LOW 

input voltage recognized by the receiving gate and the maximum LOW output voltage produced by the driving gate. 

NML = VIL - VOL 

The value of NMH is the difference between the minimum HIGH output voltage of the driving gate and the minimum 

HIGH input voltage recognized by the receiving gate. Thus, 

NMH = VOH - VIH 

where VIH = minimum HIGH input voltage, VIL = maximum LOW input voltage, VOH= minimum HIGH output 

voltage and VOL = maximum LOW output voltage. 

 

 
Inputs between VIL and VIH are said to be in the indeterminate region or forbidden zone and do not 

represent legal digital logic levels. Therefore, it is generally desirable to have VIH as close as possible to VIL and for 

this value to be midway in the “logic swing,” VOL to VOH. This implies that the transfer characteristic should switch 

abruptly; that is, there should be high gain in the transition region. For the purpose of calculating noise margins, the 

transfer characteristic of the inverter and the definition of voltage levels VIL, VOL, VIH, and VOH are  shown in 

Figure. Logic levels are defined at the unity gain point where the slope is –1. 



 If either NML or NMH for a gate are too small, the gate may be disturbed by noise that  occurs on the inputs. An 

unskewed gate has equal noise margins, which maximizes immunity to arbitrary noise sources. If a gate sees more 

noise in the high or low input state, the gate can be skewed to improve that noise margin at the expense of the other. 

Note that if |Vtp| = Vtn , then NMH and NML increase as threshold voltages are increased. Quite often, noise margins  

are compromised to improve speed. Noise sources  tend to scale with the supply voltage, so noise margins are best 

given as a fraction of the supply voltage. A noise margin of 0.4 V is quite comfortable in a 1.8 V process, but 

marginal in a 5 V process. 

NMOS INVERTER 

 
The inverter is truly the nucleus of all digital designs. Once its operation and properties  are clearly understood, 

designing more intricate structures such as NAND gates, adders, multipliers, and microprocessors is greatly simplified. 

The electrical behavior of these complex circuits can be almost completely derived by extrapolating the results 

obtained for inverters. The analysis of inverters can be extended to explain the behavior of more complex gates such 

as NAND, NOR, or XOR, which in turn form the building blocks for modules such as multipliers and processors. In 

this chapter, we focus on one single incarnation of the inverter gate, being the static CMOS inverter — or the CMOS 

inverter, in short.  



 

This is certainly the most popular at present and therefore deserves our special attention. 



Principle of Operation 

 
The logic symbol and truth table of ideal inverter is shown in figure given below. Here A is the input and B is 

the inverted output represented by their node voltages. Using positive logic, the Boolean value of logic 1 is 

represented by Vdd and logic 0 is represented by 0. Vth is the inverter threshold voltage, which is Vdd /2, where Vdd 

is the output voltage. The output is switched from 0 to Vdd when input is less than Vth. So, for 0<Vin<Vth output is 

equal to logic 0 input and Vth<Vin< Vdd is  equal to logic 1 input for inverter. From the given figure, we can see that 

the input voltage of inverter is equal to the gate to source voltage of nMOS transistor and output voltage of inverter is 

equal to drain to source voltage of nMOS transistor. The source to substrate voltage of nMOS is also called driver for 

transistor which is grounded; so VSS = 0. The output node is connected with a lumped capacitance used for VTC. 

PSEUDO-NMOS INVERTER 

 
The inverter that uses a p-device pull-up or load that has its gate permanently ground. An n-device pull-down 

or driver is driven with the input signal. This roughly equivalent to use  of a depletion load is Nmos technology and is 

thus called ‘Pseudo-NMOS’. The circuit is used in a variety of CMOS logic circuits. In this, PMOS for most of the 

time will be linear region. So resistance is low and hence RC time constant is low. When the driver is turned on a 

constant DC current flows in the circuit. 

 
The CMOS pull up network is replaced by a single pMOS transistor with its gate  grounded. Since the pMOS is 

not driven by signals, it is always ‘on'. The effective gate voltage seen by the pMOS transistor is Vdd. Thus the 

overvoltage on the p channel gate is always Vdd -VTp. When the nMOS is turned ‘on', a direct path between supply 

and ground exists and static power will be drawn. However, the dynamic power is reduced due to lower capacitive 

loading. 

BI-CMOS INVERTER 

 
BICMOS logic circuits are made by combining the CMOS and bipolar IC technologies. These ICs combine 

the advantages of BJT and CMOS transistors in them. We know that the speed of BJT is very high compared to 

CMOS. However, power dissipation in CMOS is  extremely low compared to BJT. By combining such advantages, 

we construct the BICMOS circuits. Figure shows one configuration of the BICMOS inverter, and Fig. shows its 

modified version. We see that MOS transistors T3 and T4 form the CMOS inverter logic circuit. We find  that T3 and 

T4 are driven separately from +VDD//VCC rail. With input voltage Vi = 0, the PMOS will conduct and the NMOS 



will remain OFF. This drives a current through the base of the bipolar junction transistor T1 and turns it ON. This in 

turn charges the parasitic load capacitance CL at a very fast rate. Thus the output voltage Vo rises very fast, which is 

usually much faster than the charging of CL by an MOS transistor by itself. 

 

 
 

Now, let Vi = +VDD (≡ logic 1). Then T4 will turn ON and T3 will turn OFF; this  drives T2 into the ON-

state. Since T3 is OFF, T1 will also remain OFF. In this condition, CL discharges very fast through T2ON. Thus the 

charging and discharging of CL is through BJTs and hence very fast. The circuit shown in Fig. 3.43 has two major 

defects. The first of these is that whenever the input is at logic 1, since T3 is ON, there will be a continuous path 

from 

+VDD to ground. As a result, steady power drain will occur in this case. This is totally against the advantages of 
CMOS gates. The second defect is that there is no discharge path for the base currents of T1 and T2. This will therefore 

reduce the speed of the circuit. 

To overcome these problems, we modify the circuit, as shown in Figure. In this case, NMOS transistor T4 has 

its drain connected to the output terminal rather than to +VDD. As  before, when T3 is turned ON, T1 is also turned ON. 

Now, when T4 is turned ON, we find T2 also to turn ON.. However, since the collector and base of T2 are shorted 

together through T4ON, the output voltage Vo will now be equal VBES, the saturation base-emitter voltage of T2 (= 

0.8 V). Thus in this case, the output swing is between VCC and VBES. 

Features of BICMOS gates: 

 
1. This has the advantages of both the BJTs and CMOS gates. 

2. The power driver (BJT amplifier) in the output stage is capable of driving large loads. 

3. The circuit, because of its CMOS input transistors, has high input impedance. 

4. The output impedance of the circuit is low. 

5. The noise margin is high because of the CMOS input stage. 

6. The supply voltage VDD is 5 V. 

7. The chip area is small. 



CMOS TRANSMISSION GATE 

 
The strength of a signal is measured by how closely it approximates an ideal voltage  source. In general, the 

stronger a signal, the more current it can source or sink. The power supplies, or rails, (VDD and GND) are the source of 

the strongest 1s and 0s. An nMOS transistor is an almost perfect switch when passing a 0 and thus we say it passes a 

strong 0. However, the nMOS transistor is imperfect at passing a 1. The high voltage level is somewhat  less than VDD. 

We say it passes a degraded or weak 1. 

 

 A pMOS transistor again has the opposite behavior, passing strong 1s but degraded 0s.  The transistor symbols and 

behaviors are summarized in Figure with g, s, and d indicating gate, source, and drain. 

When an nMOS or pMOS is used alone as an imperfect switch, we sometimes call it a  pass transistor. By 

combining an nMOS and a pMOS transistor in parallel (Figure (a)), we obtain a switch that turns on when a 1 is applied 

to g (Figure (b)) in which 0s and 1s are both passed in an acceptable fashion (Figure (c)). We term this a transmission 

gate or pass gate. In a circuit where only a 0 or a 1 has to be passed, the appropriate transistor (n or p) can be deleted, 

reverting to a single nMOS or pMOS device. Note that both the control input and its complement are required by the 

transmission gate. This is called double rail logic. Some circuit  symbols for the transmission gate are shown in Figure 

(d). 

 

 
In all of our examples so far, the inputs drive the gate terminals of nMOS transistors in the pull-down network 

and pMOS transistors in the complementary pull-up network, as was shown in Figure. Thus, the nMOS transistors only 

need to pass 0s and the pMOS only pass 1s, so the output is always strongly driven and the levels are never degraded. 

This is called a fully restored logic gate and simplifies circuit design considerably. In contrast to other forms of logic, 

where the pull-up and pull-down switch networks have to be ratioed in some manner, static CMOS gates operate 

correctly independently of the physical sizes of the transistors. Moreover, there is never a path through ‘ON’ transistors 

from the 1 to the 0 supplies for any combination of inputs (in contrast to single-channel MOS, GaAs technologies, or 



bipolar). As we will find in subsequent chapters, this is the basis for the low static power dissipation in  CMOS. 



CONCLUSION: 

 
CMOS technology, driven by Moore’s Law, has come to dominate the semiconductor industry. This chapter 

examined the principles of designing a simple CMOS integrated circuit. MOS transistors can be viewed as electrically 

controlled switches. Static CMOS gates are built  from pull-down networks of nMOS transistors and pull-up networks 

of pMOS transistors. we have seen that MOS transistors are four-terminal devices with a gate, source, drain, and 

body. In normal operation, the body is tied to GND or VDD so the transistor can be modeled as a  three-terminal 

device. The transistor behaves  as a voltage controlled switch. An nMOS switch is OFF (no path from source to drain) 

when the gate voltage is below some threshold Vt . The switch turns ON, forming a channel connecting source to 

drain, when the gate voltage rises  above Vt . This chapter has developed more elaborate models to predict the 

amount of current that flows when the transistor is ON. 

Even when the gate voltage is low, the transistor is not completely OFF. Subthreshold current through the 

channel drops off exponentially for Vgs < Vt , but is nonnegligible for transistors with low thresholds. Junction 

leakage currents flow through the reverse-biased p–n junctions. Tunneling current flows through the insulating gate 

when the oxide becomes thin enough. We can derive the DC transfer characteristics and noise margins of logic 

gates using either analytical expressions or a graphical load line analysis or simulation. Static CMOS gates  have 

excellent noise margins. Unlike ideal switches, MOS transistors pass some voltage levels  better than others. An nMOS 

transistor passes 0s well, but only pulls up to VDD – Vtn when passing 1s. The pMOS passes 1s well, but only 

pulls down to |Vtp| when passing 0s. This  threshold drop is exacerbated by the body effect, which increases the 

threshold voltage when the source is at a different potential than the body. 

 

POST MCQ 

1. The difficulty in achieving high doping concentration leads to ____________ 

a) error in concentration 
b) error in variation 

c) error in doping 

d) distribution error 

2. nMOS devices are formed in ____________ 

a) p-type substrate of high doping level 

b) n-type substrate of low doping level 

c) p-type substrate of moderate doping level 
d) n-type substrate of high doping level 

3. What is the condition for non saturated region? 

a) Vds = Vgs – Vt 

b) Vgs lesser than Vt 

c) Vds lesser than Vgs – Vt 

d) Vds greater than Vgs – Vt 

4. What is the condition for non conducting mode? 
a) Vds lesser than Vgs 

b) Vgs lesser than Vds 

c) Vgs = Vds = 0 

d) Vgs = Vds = Vs = 0 



5. What is the condition for linear region? 
a) Vgs lesser than Vt 

b) Vgs greater than Vt 

c) Vds lesser than Vgs 

d) Vds greater than Vgs 

6. The direction of electric field when the gate voltage is zero: 

a) Metal to semiconductor 

b) Semiconductor to metal 
c) No electric field exists 

d) None of the mentioned 

7.  The threshold voltage depends on: 

a) The workfunction difference between gate and channel 

b) The gate voltage component to change surface potential 

c) The gate voltage component to offset the depletion charge and fixed charges in gate 

oxide 
d) All of the mentioned 

8. The Lower Noise Margin is given by: 

a) VOL – VIL 

b) VIL – VOL 

c) VIL ~ VOL(Difference between VIL and VOL, depends on which one is greater) 

d) All of the Mentioned 

9. If VIL of the 2nd gate is higher than VOL of the 1st gate, then logic output 0 from the 1st 
gate is considered as: 

a) Logic input 1 

b) Uncertain 

c) Logic input 0 

d) None of the mentioned 
10. Thermal noise is generated from MOSFET by: 

a) Conduction of charge carriers in the channel 
b) Electric field across the gate and channel 
c) Capacitance of the gate oxide 
d) Substrate bias effect 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT – II 

COMBINATIONAL CIRCUITS 

 

PRE MCQ: 

1. Oxidation process is carried out using __________ 
a) hydrogen 
b) low purity oxygen 
c) sulphur 
d) nitrogen 

2. Photoresist layer is formed using __________ 

a) high sensitive polymer 
b) light sensitive polymer 

c) polysilicon 

d) silicon di oxide 

3.  _______ is sputtered on the whole wafer. 
a) silicon 

b) calcium 

c) potassium 

d) aluminium 

4. What is Lithography? 
a) Process used to transfer a pattern to a layer on the chip 

b) Process used to develop an oxidation layer on the chip 
c) Process used to develop a metal layer on the chip 

d) Process used to produce the chip 

5. Positive photo resists are used more than negative photo resists because ___________ 
a) Negative photo resists are more sensitive to light, but their photo lithographic 

resolution is not as high as that of the positive photo resists  

b) Positive photo resists are more sensitive to light, but their photo lithographic 

resolution is not as high as that of the negative photo resists 

c) Negative photo resists are less sensitive to light 

d) Positive photo resists are less sensitive to light 

THEORY: 

1. SILICON SEMICONDUCTOR FABRICATION TECHNOLOGY: 

The silicon in its pure or intrinsic state is a semiconductor, having bulk electrical 

resistance somewhere between that of a conductor and an insulator. The conductivity of 

silicon can be raised by several orders of magnitude by introducing impurity atoms into the 

silicon crystal lattice. These dopants can supply either free electrons or holes. Group III 

impurity elements such as boron that use up electrons are referred to as acceptors because 

they accept some of the electrons already in the silicon, leaving holes. Similarly, Group V 

donor elements such as arsenic and phosphorous provide electrons. Silicon that contains a 

majority of donors is known as n-type, while silicon that contains a majority of acceptors is 



known as p-type. When n- type and p-type materials are brought together, the region where 

the silicon changes from n-type to p-type is called a junction. By arranging junctions in certain 

physical structures and combining them with wires and insulators, various semiconductor 

devices can be constructed. Over the years, silicon semiconductor processing has evolved 

sophisticated techniques for building these junctions and other insulating and conducting 

structures. 

Wafer Formation 

The basic raw material used in CMOS fabs is a wafer or disk of silicon, roughly 75 mm to 300 

mm (12 microm––a dinner plate!) in diameter and less than 1 mm thick. Wafers are cut from 

boules, cylindrical ingots of single-crystal silicon that have been pulled from a crucible of pure 

molten silicon. This is known as the Czochralski method and is currently the most common 

method for producing single-crystal material. Controlled amounts of impurities are added to 

the melt to provide the crystal with the required electrical properties. A seed crystal is 

dipped into the melt to initiate crystal growth. The silicon ingot takes on the same crystal 

orientation as the seed. A graphite radiator heated by radio-frequency induction surrounds 

the quartz crucible and maintains the temperature a few degrees above the melting point of 

silicon (1425 °C). The atmosphere is typically helium or argon to prevent the silicon from 

oxidizing. The seed is gradually withdrawn vertically from the melt while simultaneously being 

rotated, as shown in Figure 3.2. The molten silicon attaches itself to the seed and 

recrystallizes as it is withdrawn. The seed withdrawal and rotation rates determine the 

diameter of the ingot. Growth rates vary from 30 to 180 mm/hour. 

Fabrication plants, or fabs, are enormously expensive to develop and operate. In the 

early days of the semiconductor industry, a few bright physicists and engineers could bring up 

a fabrication facility in an industrial building at a modest cost and most companies did their 

own manufacturing. Modern CMOS processing is complex, and while coverage of every 

nuance is not within the scope of this book, we focus on the fundamental concepts that 

impact design. 

The regions of dopants, polysilicon, metal, and contacts are defined using masks. For 

instance, in places covered by the mask, ion implantation might not occur or the dielectric or 

metal layer might be left intact. In areas where the mask is absent, the implantation can 

occur, or dielectric or metal could be etched away. The patterning is achieved by a process 



called photolithography, from the Greek photo (light), lithos (stone), and graphe (picture), 

which literally means “carving pictures in stone using light.” The primary method for defining 

areas of interest (i.e., where we want material to be present or absent) on a wafer is by the 

use of photoresists. The wafer is coated with the photoresist and subjected to selective 

illumination through the photomask. After the initial patterning of photoresist, other barrier 

layers such as polycrystalline silicon, silicon dioxide, or silicon nitride can be used as physical 

masks on the chip. This distinction will become more apparent as this chapter progresses. 

 

After the seed is dipped into the melt, the seed is gradually withdrawn vertically from the melt 

while simultaneously being rotated. The molten polycrystalline silicon melts the tip of seed and 

as it is withdrawn, refreezing occurs. As the melt freezes, it assumes the single crystal form of the 

seed. This process is continued until the melt is consumed. The diameter of the ingot is 

determined by the seed withdrawal rate and the seed rotation rate. Growth rates range from 30 

to 180 mm/hour. Slicing into wafers is usually carried out using internal cutting edge diamond   

blades. Wafers are usually between 0.25 mm and 1.0mm thick, depending n their diameter. 

Following this operation, at least one face is polished to a flat, scratch-free mirror finish. 

OXIDATION 



Many of the structures and manufacturing techniques used to make silicon integrated rely on the 

properties of the oxide of silicon, namely, silicon dioxide (SiO2). Therefore the reliable 

manufacture of SiO2 is extremely important.



 



 



 



 



 



FABRICATION FORMS -NMOS: 
 



 
 

Figure8. NMOS Fabrication process steps 

 
The process starts with the oxidation of the silicon substrate (Fig. 8(a)), in which a 

relatively thick silicon dioxide layer, also called field oxide, is created on the surface (Fig. 8(b)).  

Then, the field oxide is selectively etched to expose the silicon surface on which the MOS 

transistor will be created (Fig. 8(c)). Following this step, the surface is covered with a thin, 

high- quality oxide layer, which will eventually form the gate oxide of the MOS transistor (Fig. 

8(d)). On top of the thin oxide, a layer of polysilicon (polycrystalline silicon) is deposited (Fig. 

8(e)). Polysilicon is used both as gate electrode material for MOS transistors and also as an 

interconnect medium in silicon integrated circuits. Undoped polysilicon has relatively high 

resistivity. The resistivity of polysilicon can be reduced, however, by doping it with impurity 

atoms. 



 

 

After deposition, the polysilicon layer is patterned and etched to form the 

interconnects and the MOS transistor gates (Fig. 8(f)). The thin gate oxide not covered by 

polysilicon is also etched away, which exposes the bare silicon surface on which the source 

and drain junctions are to be formed (Fig. 8(g)). The entire silicon surface is then doped with a 

high concentration of impurities, either through diffusion or ion implantation (in this case 

with donor atoms to produce n-type doping). Figure 8(h) shows that the doping penetrates 

the exposed areas on the silicon surface, ultimately creating two n-type regions (source and 

drain junctions) in the p-type substrate. 

The impurity doping also penetrates the polysilicon on the surface, reducing its 

resistivity. Note that the polysilicon gate, which is patterned before doping actually defines 

the precise location of the channel region and, hence, the location of the source and 

the drain regions. Since this procedure allows very precise positioning of the two regions 

relative to the gate, it is also called the self-aligned process. 

Once the source and drain regions are completed, the entire surface is again covered 

with an insulating layer of silicon dioxide (Fig. 8 (i)). The insulating oxide layer is then 

patterned in order to provide contact windows for the drain and source junctions (Fig. 8 (j)). 

The surface is covered with evaporated aluminum which will form the interconnects (Fig. 8 

(k)). Finally, the metal layer is patterned and etched, completing the interconnection of the 

MOS transistors on the surface (Fig. 8 (l)). Usually, a second (and third) layer of metallic 

interconnect can also be added on top of this structure by creating another insulating oxide 

layer, cutting contact (via) holes, depositing, and patterning the metal. 

 

CMOS Fabrication 

 

When we need to fabricate both nMOS and pMOS transistors on the same substrate 

we need to follow different processes. The three different processes are, P-well process, N-

well process and Twin tub process. 

 
 
 
 
 
 
 



 

P-WELL PROCESS: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

Figure9. CMOS Fabrication (P-WELL) process steps. 

The p-well process starts with a n type substrate. The n type substrate can be used to 

implement the pMOS transistor, but to implement the nMOS transistor we need to provide 

a p- well, hence we have provided he place for both n and pMOS transistor on the same n-

type substrate. 

Mask 

sequence. 

Mask 1: 

Mask 1 defines the areas in which the deep p-well diffusion takes place. 

 



 

 

Mask 2: 

It defines the thin oxide region (where the thick oxide is to be removed or 

stripped and thin oxide grown) 

Mask 3: 

It‘s used to pattern the polysilicon layer which is deposited after thin oxide. Mask 

4: A p+ mask (anded with mask 2) to define areas where p-diffusion is to take place. 

Mask 5: 

We are using the –ve form of mask 4 (p+ mask) It defines where n-diffusion is to 

take place. 

Mask 6: 

Contact cuts are defined using this mask. 

Mask 7: 

The metal layer pattern is defined by this mask. 

Mask 8: 

An overall passivation (over glass) is now applied and it also defines openings 

for accessing pads. 

The cross section below shows the CMOS pwell inverter. 

 

Figure10. CMOS inverter (P-WELL) 
 
 
 
 
 
 
 

 



 

 

2. BASIC N-WELL PROCESS: 
In the following figures, some of the important process steps involved in the 

fabrication of a CMOS inverter will be shown by a top view of the lithographic masks and a 

cross-sectional view of the relevant areas. The n-well CMOS process starts with a moderately 

doped (with impurity concentration typically less than 1015 cm-3) p-type silicon substrate. 

Then, an initial oxide layer is grown on the entire surface. The first lithographic mask defines 

the n-well region. Donor atoms, usually phosphorus, are implanted through this window in 

the oxide. Once the n- well is created, the active areas of the nMOS and pMOS transistors can 

be defined. Figures 12.1 through 12.6 illustrate the significant milestones that occur during 

the fabrication process of a CMOS inverter. 

 

Figure-11.1: Cross sectional view 

Following the creation of the n-well region, a thick field oxide is grown in the areas 

surrounding the transistor active regions, and a thin gate oxide is grown on top of the active 

regions. 

The thickness and the quality of the gate oxide are two of the most critical fabrication 

parameters, since they strongly affect the operational characteristics of the MOS transistor, as 

well as its long-term reliability. 



Figure-11.2: Cross sectional view 

The polysilicon layer is deposited using chemical vapor deposition (CVD) and patterned by dry 

(plasma) etching. The created polysilicon lines will function as the gate electrodes of 

the nMOS and the pMOS transistors and their interconnects. Also, the polysilicon gates act as 

self- aligned masks for the source and drain implantations that follow this step. 

 
Figure-11.3: Using a set of two masks, the n+ and p+ regions are implanted into the substrate and 

into the n- well, respectively. Also, the ohmic contacts to the substrate and to the n-well are 

implanted in this process step. 



 

 Figure-11.4: An insulating silicon dioxide layer is deposited over the entire wafer using CVD. 

Then, the contacts are defined and etched away to expose the silicon or polysilicon conta ct 

windows. These contact windows are necessary to complete the circuit interconnections using 

the metal layer, which is patterned in the next step. 

Figure-11.5: Metal (aluminum) is deposited over the entire chip surface using metal 

evaporation, and the metal lines are patterned through etching. Since the wafer surface is non-

planar, the quality and the integrity of the metal lines created in this step are very critical and 

are ultimately essential for circuit reliability. 

 
 
 

 



 

 

Figure-11.6: The composite layout and the resulting cross-sectional view of the chip, showing 

one nMOS and one pMOS transistor (built-in n-well), the polysilicon and metal 

interconnections. The final step is to deposit the passivation layer (for protection) over the 

chip, except for wire- bonding pad areas. 

Twin-tub process: 

Here we will be using both p-well and n-well approach. The starting point is a n-type 

material and then we create both n-well and p-well region. To create the both well we first go 

for the epitaxial process and then we will create both wells on the same substrate. 

 

Figure 12 CMOS twin-tub inverter. 

NOTE: Twin tub process is one of the solutions for latch-up problem. 

 



 
Introduction: 

Circuit Design Process 

In this chapter we are going to study how to get the schematic into stick diagrams or 

layouts. MOS circuits are formed on four basic layers: 

> N-diffusion 

> P-diffusion 

> Polysilicon 

> Metal 

These layers are isolated by one another by thick or thin silicon dioxide insulating 

layers. Thin oxide mask region includes n-diffusion / p-diffusion and transistor 

channel. 

4. STICK DIAGRAMS: 

Stick diagrams may be used to convey layer information through the use of a color code. 

For example: n-diffusion--green poly--red blue-- metal yellow--implant black--contact 

areas. 

Encodings for NMOS process: 

 

 
Figure 1: NMOS encodings. 

 



 

 

Figure shows the way of representing different layers in stick diagram notation and mask 

layout using nmos style. 

Figure l shows when a n-transistor is formed: a transistor is formed when a green line (n+ 

diffusion) crosses a red line (poly) completely. Figure also shows how a depletion mode 

transistor is represented in the stick format. 

1 Encodings for CMOS process: 
 

Figure 2: CMOS encodings. 

Figure 2 shows when a n-transistor is formed: a transistor is formed when a green line 

(n+ diffusion) crosses a red line (poly) completely. 

Figure 2 also shows when a p-transistor is formed: a transistor is formed when a yellow line (p+ 

diffusion) crosses a red line (poly) completely. 

 



 

 

2 Encoding for BJT and MOSFETs: 
 

Figure 3: Bi CMOS encodings. 

There are several layers in an nMOS chip: 

_ a p-type substrate 

_ paths of n-type diffusion 

_ a thin layer of silicon dioxide 

_ paths of polycrystalline silicon 

_ a thick layer of silicon dioxide 

_ paths of metal (usually aluminum) 

_ a further thick layer of silicon dioxide 

With contact cuts through the silicon dioxide where connections are required. The 

three layers carrying paths can be considered as independent conductors that only interact 

where polysilicon crosses diffusion to form a transistor. These tracks can be drawn as stick 

diagrams with _ diffusion in green _ polysilicon in red _ metal in blue using black to indicate 

contacts between layers and yellow to mark regions of implant in the channels of depletion 

mode transistors. 

With CMOS there are two types of diffusion: n-type is drawn in green and p-type in 

brown. These are on the same layers in the chip and must not meet. In fact, the method of 



fabrication required that they be kept relatively far apart. Modern CMOS processes usually 

support more than one layer of metal. Two are common and three or more are often available. 

Actually, these conventions for colors are not universal; in particular, industrial (rather 

than academic) systems tend to use red for diffusion and green for polysilicon. Moreover, a  

shortage of colored pens normally means that both types of diffusion in CMOS are colored 

green and the polarity indicated by drawing a circle round p-type transistors or simply inferred 

from the context. Colorings for multiple layers of metal are even less standard. 

There are three ways that an nMOS inverter might be drawn: 

 

 

Figure 4: nMOS depletion load inverter. 

Figure4 shows schematic, stick diagram and corresponding layout of nMOS depletion load 

inverter 

Figure 5: CMOS inverter 

 



 

 

Figure 5 shows the schematic, stick diagram and corresponding layout of CMOS inverter. 

 

Figure 6 shows the stick diagrams for nMOS NOR and NAND. 

 

Figure 7: stick diagram of a given function f. 

 

Figure 7 Figure 8 

Figure 7 shows the stick diagram nMOS implementation of the function f= [(xy) +z]'. 

Figure 8 shows the stick diagram CMOS NOR and NAND, where we can see that the p diffusion 

line never touched the n diffusion directly, it is always joined using a blue color metal  line. 



NMOS and CMOS Design style: 

In the NMOS style of representing the sticks for the circuit, we use only NMOS 

transistor, in CMOS we need to differentiate n and p transistor, that is usually by the color or in 

monochrome diagrams we will have a demarcation line. Above the demarcation line are the p 

transistors and below the demarcation are the n transistors. Following stick shows CMOS 

circuit example in monochrome where we utilize the demarcation line. 

 

Figure 9: stick diagram of dynamic shift register in CMOS style. 

 

Figure 9 shows the stick diagram of dynamic shift register using CMOS style. Here the output of  

the TG is connected as the input to the inverter and the same chain continues depending the 

number of bits. 

DESIGN RULES: 

Design rules include width rules and spacing rules. Mead and Conway developed a set 

of simplified scalable X -based design rules, which are valid for a range of fabrication 

technologies. In these rules, the minimum feature size of a technology is characterized as 2 X.  

All width and spacing rules are specified in terms of the parameter X. Suppose we have design 

rules that call for a minimum width of 2 X, and a minimum spacing of 3 X . If we select a 2 um 

technology (i.e., X = 1 um), the above rules are translated to a minimum width of 2 um and a  

minimum spacing of 3 um. On the other hand, if a 1 um technology (i.e., X = 0.5 um) is 

selected, then the same width and spacing rules are now specified as 1 um and 1.5 um, 

respectively. 

 



 
 

 
 

Figure 10: Design rules for the diffusion layers and metal layers. 

Figure 10 shows the design rule n diffusion, p diffusion, poly, metal1 and metal 2. The n and p 

diffusion lines is having a minimum width of 2λ and a minimum spacing of 3λ.Similarly we are 

showing for other layers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Figure 11: Design rules for transistors and gate over hang distance. 

Figure shows the design rule for the transistor, and it also shows that the poly should 

extend for a minimum of 7k beyond the diffusion boundaries. (gate over hang distance) 

 

What is Via? 

It is used to connect higher level metals from metal connection. The cross section and 

layout view given figure 13 explain via in a better way. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Figure 12: cross section showing the contact cut and via 

Figure shows the design rules for contact cuts and Vias. The design rule for contact 

is minimum2λx2λ and same is applicable for a Via. 

Figure 13: Design rules for contact cuts and vias 

 

 



 

 

1 Buried contact: The contact cut is made down each layer to be joined and it is shown 

in figure 14. 

Figure 14: Buried contact. 

2 Butting contact: The layers are butted together in such a way the two contact cuts 

become contiguous. We can better under the butting contact from figure 15. 

Figure 15: Butting contact. 

CMOS LAMBDA BASED DESIGN RULES: 

Till now we have studied the design rules wrt only NMOS, what are the rules to be followed if  

we have the both p and n transistor on the same chip will be made clear with the diagram. 

Figure 16 shows the rules to be followed in CMOS well processes to accommodate both n and 

p transistors. 

 



 

Figure 16: CMOS design rules. 

1 Orbit 2μm CMOS process: 

In this process all the spacing between each layers and dimensions will be in terms 

micrometer. The 2^m here represents the feature size. All the design rules whatever we have 

seen will not have lambda instead it will have the actual dimension in micrometer. 

In one way lambda based design rules are better compared micrometer based design rules, 

that is lambda based rules are feature size independent. 

Figure 17 shows the design rule for BiCMOS process using orbit 2um process. 

 

Figure 17: BiCMOS design rules. 

 
 



 

 

The following is the example stick and layout for 2way selector with enable (2:1 MUX). 

 

 

Figure 18: Two way selector stick and layout 

 
BASIC PHYSICAL DESIGN AN OVERVIEW 

 

 

 

The VLSI design flow for any IC design is as follows 

1 .Specification (problem definition) 

2. Schematic (gate level design) (equivalence check) 

3. Layout (equivalence check) 
 

4. Floor Planning 

5 .Routing, Placement 

6. On to Silicon 

 

When the devices are represented using these layers, we call it physical design. The 

design is carried out using the design tool, which requires  to follow certain rules. Physical 

structure is required to study the impact of moving from circuit to layout. When we draw the 

layout from the schematic, we are taking the first step towards the physical design. Physical  

design is an important step towards fabrication. Layout is representation of a schematic into 

layered diagram. This diagram reveals the different layers like ndiff, polysilicon etc that go into 



formation of the device. At every stage of the physical design simulations are carried out 

to verify whether the design is as per requirement. Soon after the layout design the DRC check 

is used to verify minimum dimensions and spacing of the layers. Once the layout is done, a 

layout versus schematic check carried out before proceeding further. There are different tools 

available for drawing the layout and simulating it. 

The simplest way to begin a layout representation is to draw the stick diagram. But as 

the complexity increases it is not possible to draw the stick diagrams. For beginners it easy to 

draw the stick diagram and then proceed with the layout for the basic digital gates. We will 

have a look at some of the things we should know before starting the layout. In the schematic 

representation lines drawn between device terminals represent interconnections and any no 

planar situation can be handled by crossing over. But in layout designs a little more 

concern about the physical interconnection of different layers. By simply drawing one layer 

above the other it not possible to make interconnections, because of the different characters of 

each layer. Contacts have to be made whenever such interconnection is required. The power 

and the ground connections are made using the metal and the common gate connection using 

the polysilicon. The metal and the diffusion layers are connected using contacts. The substrate 

contacts are made for same source and substrate voltage. Which are not implied in the 

schematic. These layouts are governed by DRC's and have to be atleast of the minimum size 

depending on the technology used. The crossing over of layers is another aspect which is of 

concern and is addressed next. 

1. Poly crossing diffusion makes a transistor 
 

2. Metal of the same kind crossing causes a short. 
 

3. Poly crossing a metal causes no interaction unless a contact is made. 

Different design tricks need to be used to avoid unknown creations. Like a combination 

of metal1 and metal 2 can be used to avoid short. Usually metal 2 is used for the global vdd 

and vss lines and metal1 for local connections. 



 

 

 

 

 

 

SCHEMATIC AND LAYOUT OF BASIC GATES 

 

1. CMOS INVERTER/NOT GATE SCHEMATIC 
 

 

 

TOWARDS THE LAYOUT 

 

 

Figure 20: Stick diagram of inverter. 

The diagram shown here is the stick diagram for the CMOS inverter. It consists of a 

Pmos and a Nmos connected to get the inverted output. When the input is low, Pmos (yellow) 

is on and pulls the output to vdd; hence it is called pull up device. When Vin =1, Nmos 

(green) is on it pulls Vout to Vss, hence Nmos is a pull down device. The red lines are the poly 

silicon lines connecting the gates and the blue lines are the metal lines for VDD (up) and VSS 

(down).The layout of the cmos inverter is shown below. Layout also gives the minimum 

dimensions of different layers, along with the logical connections and main thing about 

layouts is that can be simulated and checked for errors which cannot be done with only stick 

diagrams. 

 



Figure 21: Layout of inverter. 

The layout shown above is that of a CMOS inverter. It consists of a pdiff (yellow 

colour) forming the pmos at the junction of the diffusion and the polysilicon (red colour) 

shown hatched ndiff (green) forming the nmos(area hatched).The different layers drawn are 

checked for their dimensions using the DRC rule check of the tool used for drawing. Only after 

the DRC (design rule check) is passed the design can proceed further. Further the design 

undergoes Layout Vs Schematic checks and finally the parasitic can be extracted. 

2. CMOS NAND & NOR GATES SCHEMATIC 

 



Figure 22: Schematic diagrams of nand and nor gate 

We can see that the nand gate consists of two pmos in parallel which forms the pull up logic 

and two nmos in series forming the pull down logic. It is the complementary for the nor gate. 

We get inverted logic from CMOS structures. The series and parallel connections are for getting 

the right logic output. The pull up and the pull down devices must be placed to get high and 

low outputs when required. 

 

Figure 23: Stick diagrams of nand gate. 



 

Figure 24: Layout of nand gate. 

Figure 25: Stick diagram of nor gate. 



 
 

Figure 26: Layout of nor gate. 

 
GENERAL LAYOUT GUIDELINES 

1. The electrical gate design must be completed by checking the following 

a. Right power and ground supplies 

b. Noise at the gate input 

c. Faulty connections and transistors 

d. Improper ratios 

c. Incorrect clocking and charge sharing 

2. VDD and the VSS lines run at the top and the bottom of the design 

3. Vertical poysilicon for each gate input 

4. Order polysilicon gate signals for maximal connection between transistors 

5. The connectivity requires to place nmos close to VSS and pmos close to VDD 

6. Connection to complete the logic must be made using poly, metal and even metal2 
 

The design must always proceeds towards optimization. Here optimization is at 

transistor level rather then gate level. Since the density of transistors is large, we could obtain 

smaller and faster layout by designing logic blocks of 1000 transistors instead of considering a 

single at a time and then putting them together. Density improvement can also be made by 

considering optimization of the other factors in the layout. 

The factors are 

l. Efficient routing space usage. They can be placed over the cells or even in multiple layers. 



2. Source drain connections must be merged better. 

3. White (blank) spaces must be minimum 

4. The devices must be of optimum sizes. 
 

5. Transparent routing can be provided for cell to cell interconnection, this reduces global 

wiring problems 

 
LAYOUT OPTIMIZATION FOR PERFORMANCE 

l. Vary the size of the transistor according to its position in series. The transistor closest to the 

output is the smallest. The transistor nearest to the VSS line is the largest. This helps in 

increasing the performance by 30 %. A three input nand gate with the varying size is shown 

next. 

 

Figure 30: Layout optimization with varying diffusion areas. 

2. Less optimized gates could occur even in the case of parallel connected transistors. This is  

usually seen in parallel inverters, nor & nand. When drains are connected in parallel, we must 



try and reduce the number of drains in parallel i.e. wherever possible we must try and connect 

drains in series at least at the output. This arrangement could reduce the capacitance at the 

output enabling good voltage levels. One example is as shown next. 

Figure 30: Layout of nor gate showing series and parallel drains. 

MULTIPLEXER: 

In electronics, a multiplexer or mux (occasionally the terms muldex or muldem are also 

found for a combination multiplexer-demultiplexer) is a device that performs multiplexing; it 

selects one of many analog or digital input signals and forwards the selected input into a 

single line. A multiplexer of 2n inputs has n select lines, which are used to select which 

input line to send to the output. 

An electronic multiplexer makes it possible for several signals to share one device or 

resource, for example one A/D converter or one communication line, instead of having one 

device per input signal. 

 

An electronic multiplexer can be considered as a multiple-input, single-output switch, and a 

demultiplexer as a single-input, multiple-output switch. The schematic symbol for a 

multiplexer is an isosceles trapezoid with the longer parallel side containing the input pins 

and the short parallel side containing the output pin. The schematic on the right shows a 2-to-

1 multiplexer on the left and an equivalent switch on the right. The sel wire connects the 

desired input to the output. The stick diagram for Multiplexer is given as follows for the 2 

inputs A &B, 





SCALING OF MOS DEVICES 
 

 
 

 



 

 

 

 

 

 

 

 

 

 

 



 



 



 



 



CONCLUSION: 

CMOS process options and directions can greatly influence design decisions. Frequently,  

the combination of performance and cost possibilities in a new process can provide new 

product opportunities that were not available previously. Similarly, venerable processes can 

offer good opportunities with the right product. One issue that has to be kept in mind is the 

ever-increasing cost of having a CMOS design fabricated in a leading-edge process. This in turn 

is reflected in the types of design and approaches to design that are employed for CMOS chips 

of the future. For instance, making a design programmable so that it can have a longer product 

life is a good first start. 

POST MCQ: 

1. The isolated active areas are created by technique known as ___________ 

a) Etched field-oxide isolation 

b) Local Oxidation of Silicon 
c) Etched field-oxide isolation or Local Oxidation of Silicon 

d) None of the mentioned 

2. Implant is represented using ___________ 

a) black, dark line 

b) black, dotted line 

c) yellow, dark line 

d) yellow, dotted line 

3. How is nMOS depletion mode transistor represented? 

a)  

b)  

https://www.sanfoundry.com/wp-content/uploads/2017/05/vlsi-questions-answers-stick-diagram-q10a.png
https://www.sanfoundry.com/wp-content/uploads/2017/05/vlsi-questions-answers-stick-diagram-q10b.png


c)  

d)  

4. The width of n-diffusion and p-diffusion layer should be? 
a) 3λ 

b) 2λ 

c) λ 

d) 4λ 

5. What should be the width of metal 1 and metal 2 layers? 

a) 3λ, 3λ 
b) 2λ, 3λ 

c) 3λ, 4λ 

d) 4λ, 3λ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT III 

https://www.sanfoundry.com/wp-content/uploads/2017/05/vlsi-questions-answers-stick-diagram-q10c.png
https://www.sanfoundry.com/wp-content/uploads/2017/05/vlsi-questions-answers-stick-diagram-q10d.png


MOS CIRCUIT PERFORMANCE AND CMOS LOGIC CIRCUITS 

 

PRE MCQ: 

1. For 2 micron technology, what is the Rs value for polysilicon? 

a) 10-40 

b) 20-50 

c) 15-30 
d) 15-100 

2. What is the relationship between channel resistance and sheet resistance? 

a) R = Rs 

b) R = Z*Rs 

c) R = Z/Rs 

d) R = Rs/Z 

3. Z can be given as the ration of ___________ 
a) lower channel by upper channel 

b) upper channel by lower channel 

c) all of the mentioned 

d) none of the mentioned 

4. A feature size square has ___________ 

a) L > W 

b) W > L 
c) L = W 

d) L > d 

5. Relative area for L = 20λ and W = 3λ is? 

a) 10 

b) 15 

c) 1/15 

d) 1/10 

 

THEORY 

SHEET RESISTANCE: 

 
The resistance of a unifor m slab of conducting material can be expressed as, 

 

where ρ is the resistivity. This expression can be rewritten as 

 

where R = ρ /t is the sheet resistance and has units of ohms/square. Note that a square is a 

dimensionless quantity corresponding to a slab of equal length and width. This is convenient 



because resistivity and thickness are characteristics of the process outside the control of the circuit 

designer and can be abstracted away into the single sheet resistance parameter. 

 

 

To obtain the resistance of a conductor on a layer, multiply the sheet resistance by the ratio 

of length to width of the conductor. For example, the resistances of the two shapes in Figure are 

equal because the length-to-width ratio is the same even though the sizes are different. 

Nonrectangular shapes can be decomposed into simpler regions for which the resistance is  

calculated. 

Table 6.2 shows bulk electrical resistivities of pure metals at room temperature. The 

resistivity of thin metal films used in wires tends to be higher because of scattering off the surfaces 

and grain boundaries, 

 

 
As shown in Figure, copper must be surrounded by a lower-conductivity diffusion barrier 

that effectively reduces the wire cross-sectional area and hence raises the resistance. Moreover, 

the polishing step can cause dishing that thins the metal. Even a 10 nm barrier is quite significant 



when the wire width is only tens of nanometers. If the average barrier thickness is t barrier and the 

height is reduced by tdish, the resistance becomes, 

 

 
The resistivity of polysilicon, diffusion, and wells is significantly influenced by the doping 

levels. Polysilicon and diffusion typically have sheet resistances under 10 ohms/square when 

silicided and up to several hundred ohms/square when unsilicided. Wells have lower doping and 

thus even higher sheet resistance. These numbers are highly process dependent. Large resistors are 

often made from wells or unsilicided polysilicon. 

Contacts and vias also have a resistance, which is dependent on the contacted materials and 

size of the contact. Typical values are 2–20 ohms. Multiple contacts should be used to form low- 

resistance connections, as shown in Figure. When current turns at a right angle or reverses, a square 

array of contacts is generally required, while fewer contacts can be used when the flow is in the 

same direction 

CAPACITANCES ESTIMATION 

 

The first component of capacitive parasitics we will examine is the MOSFET capacitances. 

These parasitic components are mainly responsible for the intrinsic delay of logic gates, and they 

can be modeled with fairly high accuracy for gate delay estimation. The extraction of transistor 

parasitics from physical structure (mask layout) is also fairly straight forward. 

 



The parasitic capacitances associated with a MOSFET are shown in Fig.7 as lumped 

elements between the device terminals. Based on their physical origins, the parasitic device  

capacitances can be classified into two major groups: (1) oxide-related capacitances and (2) 

junction capacitances. The gate-oxide-related capacitances are Cgd (gate-to-drain capacitance), 

Cgs (gate-to-source capacitance), and Cgb (gate-to-substrate capacitance). Notice that in reality, 

the gate-to-channel capacitance is distributed and voltage dependent. Consequently, all of the 

oxide-related capacitances described here change with the bias conditions of the transistor. 

Figure 8 shows qualitatively the oxide-related capacitances during cut-off, linear-mode operation 

and saturation of the MOSFET. The simplified variation of the three capacitances with gate-to-

source bias voltage is shown in Fig. 9. 

 

Figure7: Lumped representation of parasitic MOSFET capacitances. 

 
 
 

Figure: Schematic representation of MOSFET oxide capacitances during (a) cut-off, (b) linear- mode 

operation, and (c) saturation. 



Note that the total gate oxide capacitance is mainly determined by the parallel -plate 

capacitance between the polysilicon gate and the underlying structures. Hence, the magnitude of 

the oxide-related capacitances is very closely related to (1) the gate oxide thickness, and (2) the 

area of the MOSFET gate. Obviously, the total gate capacitance decreases with decreasing device 

dimensions (W and L), yet it increases with decreasing gate oxide thickness. In sub-micron 

technologies, the horizontal dimensions (which dictate the gate area) are usually scaled down 

more easily than the horizontal dimensions, such as the gate oxide thickness. Consequently,  

MOSFET transistors fabricated using sub-micron technologies have, in general, smaller gate 

capacitances. 

 

 

Figure : Variation of oxide capacitances as functions of gate-to-source voltage. 

 
Now we consider the voltage-dependent source-to-substrate and drain-to-substrate 

capacitances, Csb and Cdb. Both of these capacitances are due to the depletion charge 

surrounding the respective source or drain regions of the transistor, which are embedded in the 

substrate. Figure 10 shows the simplified geometry of an n-type diffusion region within the p- type 

substrate. Here, the diffusion region has been approximated by a rectangular box, which consists 

of five planar pn-junctions. The total junction capacitance is a function of the junction area (sum of 

all planar junction areas), the doping densities, and the applied terminal voltages. Accurate 

methods for estimating the junction capacitances based on these data are readily available in the 



literature, therefore, a detailed discussion of capacitance calculations will not be presented here. 

Figure: Three-dimensional view of the n-type diffusion region within the p-type substrate. 

One important aspect of parasitic device junction capacitances is that the amount of  

capacitance is a linear function of the junction area. Consequently, the size of the drain or the 

source diffusion area dictates the amount of parasitic capacitance. In sub-micron technologies, 

where the overall dimensions of the individual devices are scaled down, the parasitic junction 

capacitances also decrease significantly. It was already mentioned that the MOSFET parasitic 

capacitances are mainly responsible for the intrinsic delay of logic gates. We have seen that both 

the oxide-related parasitic capacitances and the junction capacitances tend to decrease with 

shrinking device dimensions, hence, the relative significance of intrinsic gate delay diminishes in 

sub-micron technologies. 

DISTRIBUTED RC EFFECTS 

 

In a typical VLSI chip, the parasitic interconnect capacitances are among the most difficult 

parameters to estimate accurately. Each interconnection line (wire) is a three dimensional structure 

in metal and/or polysilicon, with significant variations of shape, thickness, and vertical distance  

from the ground plane (substrate). Also, each interconnect line is typically surrounded by a number 

of other lines, either on the same level or on different levels. Figure 4.11 shows a possible, realistic 

situation where interconnections on three different levels run in close proximity of each other. The 

accurate estimation of the parasitic capacitances of these wires with respect to the ground plane,  

as well as with respect to each other, is obviously a complicated task. 

 
 



Unfortunately for the VLSI designers, most of the conventional computer-aided VLSI design 

tools have a relatively limited capability of interconnect parasitic estimation. This is true even for 

the design tools regularly used for sub-micron VLSI design, where interconnect parasitics were 

shown to be very dominant. The designer should therefore be aware of the physical problem and 

try to incorporate this knowledge early in the design phase, when the initial  floor planning of the 

chip is done. 

Figure illustrates the Interconnect segment running parallel to the surface, used for parasitic 

capacitance estimations. 

 
 

Figure : Influence of fringing electric fields upon the parasitic wire capacitance First, consider 

the section of a single interconnect which is shown in Fig12. It is assumed that this wire segment 

has a length of (l) in the current direction, a width of (w) and a thickness  of (t). Moreover, we 

assume that the interconnect segment runs parallel to the chip surface and is separated from the 

ground plane by a dielectric (oxide) layer of height (h). Now, the correct estimation of the parasitic 

capacitance with respect to ground is an important issue. Using the basic geometry given in Fig 12, 

one can calculate the parallel-plate capacitance Cpp of the interconnect segment. However, in 

interconnect lines where the wire thickness (t) is comparable in magnitude to the ground-plane 

distance (h), fringing electric fields significantly increase the total parasitic capacitance (Fig). 



Figure shows the variation of the fringing-field factor FF = Ctotal/Cpp, as a function of (t/h), (w/h) 

and (w/l). It can be seen that the influence of fringing fields increases with the decreasing (w/h) ratio, 

and that the fringing-field capacitance can be as much as 10-20 times larger than the parallel-

plate capacitance. It was mentioned earlier that the sub-micron fabrication technologies allow the 

width of the metal lines to be decreased somewhat, yet the thickness of the line must be 

preserved in order to ensure structural integrity. This situation, which involves narrow metal lines with a 

considerable vertical thickness, is especially vulnerable to fringing field effects. 

 

Figure: Variation of the fringing-field factor with the interconnect geometry. 

 
A set of simple formulas developed by Yuan and Trick in the early 1980’s can be used to 

estimate the capacitance of the interconnect structures in which fringing fields complicate the  

parasitic capacitance calculation. The following two cases are considered for two different ranges of 

line width (w). 

 
 
 
 
 
 

(4.2) 



 

These formulas permit the accurate approximation of the parasitic capacitance values to 

within 10% error, even for very small values of (t/h). Figure 4.15 shows a different view of the line 

capacitance as a function of (w/h) and (t/h). The linear dash-dotted line in this plot represents the 

corresponding parallel-plate capacitance, and the other two curves represent the actual 

capacitance, taking into account the fringing-field effects. 

 

 
Figure-15: Capacitance of a single interconnect, as a function of (w/h) and (t/h). 

 
Now consider the more realistic case where the interconnection line is not “alone” but is 

coupled with other lines running in parallel. In this case, the total parasitic capacitance of the line  is 

not only increased by the fringing-field effects, but also by the capacitive coupling between the 

lines. Figure 16 shows the capacitance of a line which is coupled with two other lines on both 

sides, separated by the minimum design rule. Especially if both of the neighboring lines are biased at 

ground potential, the total parasitic capacitance of the interconnect running in the middle (with 

respect to the ground plane) can be more than 20 times as large as the simple parallel-plate 

capacitance. Note that the capacitive coupling between neighboring lines is increased when the 

thickness of the wire is comparable to it 

Figure shows the cross-section view of a double-metal CMOS structure, where the 

individual parasitic capacitances between the layers are also indicated. The cross-section does not 

show a MOSFET, but just a portion of a diffusion region over which some metal lines may pass. The 

inter-layer capacitances between the metal-2 and metal-1, metal-1 and polysilicon, and metal- 2 and 

polysilicon are labeled as Cm2m1, Cm1p and Cm2p, respectively. The other parasitic capacitance 



components are defined with respect to the substrate. If the metal line passes over an active 

region, the oxide thickness underneath is smaller (because of the active area window), and 

consequently, the capacitance is larger. These special cases are labeled as Cm1a and Cm2a. 

Otherwise, the thick field oxide layer results in a smaller capacitance value. 

 

 

7:  Cross-sectional view of a double-metal CMOS structure, showing capacitances between layers. 

The vertical thickness values of the different layers in a typical 0.8 micron CMOS technology 

are given below as an example. 

Field oxide thickness 0.52 um 

Gate oxide thickness 16.0 nm

Poly 1 thickness 0.35 um (minimum width 0.8 um

Poly-metal oxide thickness 0.65 um 

Metal 1 thickness 0.60 um (minimum width 1.4 um

Via oxide thickness 1.00 um 

Metal 2 thickness 1.00 um (minimum width 1.6 um

n+ junction depth 0.40 um 

 
p+ junction depth 

 
0.40 um

 

 

n-well junction depth 

 

3.50 um

 

 



The list below contains the capacitance values between various layers, also for a typical 0.8 micron 

CMOS technology. 

Poly over field oxide (area) 0.066 fF/um2

Poly over field oxide (perimeter) 0.046 fF/um

Metal-1 over field oxide (area) 0.030 fF/um2

Metal-1 over field oxide (perimeter) 0.044 fF/um

Metal-2 over field oxide (area) 0.016 fF/um2

Metal-2 over field oxide (perimeter) 0.042 fF/um

Metal-1 over poly (area) 0.053 fF/um2

Metal-1 over poly (perimeter) 0.051 fF/um

Metal-2 over poly (area) 0.021 fF/um2

Metal-2 over poly (perimeter) 0.045 fF/um

Metal-2 over metal-1 (area) 0.035 fF/um2

Metal-2 over metal-1 (perimeter) 0.051 fF/um
 

 

For the estimation of interconnect capacitances in a complicated three-dimensional 

structure, the exact geometry must be taken into account for every portion of the wire. Yet this  

requires an unacceptable amount of computation in a large circuit, even if simple formulas are 

applied for the calculation of capacitances. Usually, chip manufacturers supply the area 

capacitance (parallel-plate cap) and the perimeter capacitance (fringing-field cap) figures for each 

layer, which are backed up by measurement of capacitance test structures. These figures can be 

used to extract the parasitic capacitances from the mask layout. It is often prudent to include test 

structures on chip that enable the designer to independently calibrate a process to a set of design 

tools. In some cases where the entire chip performance is influenced by the parasitic capacitance 

of a specific line, accurate 3-D simulation is the only reliable solution.



Interconnect Resistance Estimation 

The parasitic resistance of a metal or polysilicon line can also have a profound influence on the 

signal propagation delay over that line. The resistance of a line depends on the type of material 

used (polysilicon, aluminum, gold ...), the dimensions of the line and finally, the number and 

locations of the contacts on that line. Consider again the interconnection line shown in Fig12. 

The total resistance in the indicated current direction can be found as 

 

 
where the greek letter ro represents the characteristic resistivity of the interconnect 

material, and Rsheet represents the sheet resistivity of the line, in (ohm/square). For a typical 

polysilicon layer, the sheet resistivity is between 20-40 ohm/square, whereas the sheet 

resistivity of silicide is about 2- 4 ohm/square. Using the formula given above, we can estimate the 

total parasitic resistance of a wire segment based on its geometry. Typical metal-poly and metal-

diffusion contact resistance values are between 20-30 ohms, while typical via resistance is about 

0.3 ohms. 

 
 
 

In most short-distance aluminum and silicide interconnects, the amount of parasitic wire 

resistance is usually negligible. On the other hand, the effects of the parasitic resistance must be 

taken into account for longer wire segments. As a first-order approximation in simulations, the 

total lumped resistance may be assumed to be connected in series with the total lumped 

capacitance of the wire. A much better approximation of the influence of distributed parasitic 

resistance can be obtained by using an RC-ladder network model to represent the interconnect 

segment (Fig18). Here, the interconnect segment is divided into smaller, identical sectors, and 

each sector is represented by an RC-cell. Typically, the number of these RC-cells (i.e., the 

resolution of the RC model) determines the accuracy of the simulation results. On the other 

hand, simulation time restrictions usually limit the resolution of this distributed line model. 



 

1.  SWITCHING CHARACTERISTICS 

 
Delay and power are influenced as much by the wires as by the transistors, delves into 

interconnect analysis and design. A chip is of no value if it cannot reliably accomplish its function, 

how we achieve robustness in designs. 

We begin with a few definitions illustrated in Figure, 

 
 Propagation delay time, tpd = maximum time from the input crossing 50% to the output 

crossing 50% 

 Contamination delay time, tcd = minimum time from the input crossing 50% to the output 

crossing 50% 

 Rise time, tr = time for a waveform to rise from 20% to 80% of its steady-state value 

 Fall time, tf = time for a waveform to fall from 80% to 20% of its steady-state value 

 Edge rate, trf = (tr + tf )/2 

 

Intuitively, we know that when an input changes, the output will retain its old value for at 

least the contamination delay and take on its new value in at most the propagation delay. We 

sometimes differentiate between the delays for the output rising, tpdr /tcdr , and the output falling, 

tpdf /tcdf. Rise/fall times are also sometimes called slopes or edge rates. Propagation and 

contamination delay times are also called max-time and min-time, respectively. The gate that 

charges or discharges a node is called the driver and the gates and wire being driven are called the 

load. Propagation delay is usually the most relevant value of interest, and is often simply called 

delay. 



  

Empirical delay model: 

A simulator is used to model the gate. The measured values are backsubstituted into 

appropriate delay equations. The delay of simple gates may be approximated by the delay of an 

equivalent inverter. In a simple gate circuit, series connected ‘i’ number of MOSFETs result in an 

effective β of; 

1/βeff = 1/β1 + 1/β2 + … + 1/βi 
In a simple gate circuit, parallel connected ‘i’ number of MOSFETs result in an effective β of; 

βeff = min{β1, β2, … , βi} 

Input waveform slope affects the delay: Input signal is not a step function, it has a finite rise and 

fall times. Input capacitance affects the delay; Gate input capacitance is a function of gate input 

voltage; MOSFET gate to drain capacitance increases effective input capacitance (bootstrapping). 

Switch-Level RC models: This is an RC modeling technique that represents transistors as a 

resistance discharging or charging a capacitance. The models include, 

• Simple RC delay model, 

• RC-tree model 

Macro modeling: Logic gates are simple delay elements. Simulated gate delay characteristics are 

approximated as; 

td= tinternal + k toutput 

where k is the loading capacitance, toutput is delay per loading capacitance and tinternal is delay 

for zero loading capacitance. Body Effect as a dynamic problem: Place the transistors with the 

latest arriving signals nearest to the gate output. If diffusion is used as wiring then use it for 

MOSFETs closest to the gate output. 



 



 



 

2. STAGE RATIO 

 

A chain of increasingly larger inverters is usually employed to drive large loads. The ratio by which 

each stage is increased in size is called the stage ratio. 

Transistor Gate Sizing 

For a simple CMOS inverter, both the static and dynamic characteristics of the circuit were 

dependent on the transistor properties and Vt. It is therefore clear that designers must take care to 

control these parameters to ensurethat circuits work well. In practice, there is only a limited amount 

of control available to the designer. The threshold voltage cannot (or should not) be modified at will 

by the designer. Vt is strongly dependent on the doping of the substrate material, the thickness of the 

gate oxide and the potential in the substrate. The doping in the substrate and the oxide thickness are 

physical parameters that are determined by the process designers, hence the circuit designer is 

unable to modify them. The substrate potential can be varied at will by the designer, and this will 

influence Vt via a mechanism known as the body effect. It is unwise to tamper with the substrate 

potential, and for digital design the bulk connection is always shorted to VSS for NMOS and VDD 



for PMOS. Since the carrier mobility (n or p) is a fixed property of the semiconductor (affected by 

process), ox is a fixed physical parameter and tox is set by process. The designer is therefore left 

with the two dimensional parameters, W and L. In principle both W and L can be varied at will by 

the chip designer, provided they stay within the design rules for the minimum size of any feature. 

However, the smaller L, the larger and smaller the gate capacitance, hence the quicker the circuit, so 

with few exceptions designers always use the smallest possible L available in a process. For 

example, in a 0.1 m process the gate length will be 0.1 m for virtually every single transistor on the 

chip. To conclude, the only parameter that the circuit designer can manipulate at will is the 

transistor gate width, W, and much of the following discussion will deal with the effect of 

modifying W and making the best selection. 

 
 

Transistor sizing offers at best a linear performance benefit, while supply voltage offers an 

exponential performance benefit. As a general rule, minimum energy under a performance 

constraint is thus achieved by using minimum width transistors and raising the supply voltage if 

necessary from the minimum energy point until the performance is achieved (assuming the 

performance requirement is low enough that the circuit remains in the subthreshold regime). 

If Vt variations from random dopant fluctuations are extremely high, wider transistors might 

become advantageous to reduce the variability and its attendant risk of high leakage. Also, if one 

path through a circuit is far more critical than the others, upsizing the transistors in that path for 

speed might be better than raising the supply voltage to the entire circuit. When minimum-width 

transistors are employed, wires are likely to contribute the majority of the switching capacitance. 

To shorten wires, subthreshold cells should be as small as possible; the cell height is generally set 

by the minimum height of a flip-flop. Good floor planning and placement is essential. 

STAGE RATIO FOR LARGER LOAD 

 

If large loads have to be driven, the delay may increase drastically. Large loads are 



output capacitances, clock trees, etc. 

td = tinv (CL/CG) 
 
Where tinv=is the average delay of a minimum-sized inverter driving another minimum sized 

inverter, CL = load capacitance& CG = gate capacitance 

CL= 1000CG, then td = 1000.tinv 

 
 
 

A possibility to reduce the delay, is to use a sequence of n scaled inverters, but not the 

optimum delay: 

td = tinv (40/1)+ tinv (200/40) + tinv (1000/200)= 50tinv 

 
We may decrease the delay by using larger transistors to decrease the resistance. Scaling 

transistors by factor S results in: 

 
 

But scaling the transistor also affects the input capacitance of the transistor, Cin,scaled = S . Cin 

The problem is if input signal is placed at inverter 1 what’s the number of stages N and the 

scaling factor S that will minimize the time needed for the signal to reach Cload 

 

td = t1+t2+t3+…+tN 

 
td = R1C2+ R2C3 + R3C4 +…+RN-1CN+RNCload 



 

The delay through each stage is atd, where td is the average delay of a minimum-sized inverter 

driving another minimum-sized inverter. Hence the delay through n stages is natd. If the ratio of 

the load capacitance to the capacitance of a minimum-sized inverter is R=CL / Cg , then R = an. 

Hence ln(R)=nln(a). Thus, the variable part of the above equation, normalized to e, is graphed in 

Figure. The graph shows when a = 2.7 = e would minimize the total delay (dtd/dS = 0). This 

yields, 

S = e =2.71 
 
 

3. SIMPLE EXAMPLES OF COMBINATIONAL AND SEQUENTIAL CIRCUITS USING CMOS 

The design considerations for a simple inverter circuit were presented in the previous 

chapter. In this chapter, the design of the inverter will be extended to address the synthesis of 

arbitrary digital gates such as NOR, NAND and XOR. The focus will be on combinational logic 

(or non-regenerative) circuits that have the property that at any point in time, the output of the 

circuit is related to its current input signals by some Boolean expression (assuming that the 

transients through the logic gates have settled). No intentional connection between outputs and 

inputs is present. In another class of circuits, known as sequential or regenerative circuits 

—to be discussed in a later chapter—, the output is not only a function of the current input data, 

but also of previous values of the input signals (Figure). This is accomplished by connecting one or 



more outputs intentionally back to some inputs. Consequently, the circuit “remembers” past events 

and has a sense of history. A sequential circuit includes a combinational logic portion and a module 

that holds the state. Example circuits are registers, counters, oscillators, and memory. 

 
 

There are numerous circuit styles to implement a given logic function. As with the inverter, 

the common design metrics by which a gate is evaluated include area, speed, energy and power. 

Depending on the application, the emphasis will be on different metrics (e.g., in high performance 

processor, the switching speed of digital circuits is the primary metric while in a battery operated 

circuit it is the energy dissipation). In addition to these metrics, robustness to noise is also a very 

important consideration. We will see that certain logic styles (e.g., Dynamic logic) can significantly 

improve performance, but can be more sensitive to noise. Recently, power dissipation has also 

become a very important requirement and significant emphasis is placed on understanding the 

sources of power and approaches to deal with power. 

Static CMOS Design 

 

The most widely used logic style is static complementary CMOS. The static CMOS style 

is really an extension of the static CMOS inverter to multiple inputs. In review, the primary 

advantage of the CMOS structure is robustness (i.e, low sensitivity to noise), good performance, 

and low power consumption (with no static power consumption). 

The complementary CMOS circuit style falls under a broad class of logic circuits called 

static circuits in which at every point in time (except during the switching transients), each gate 

output is connected to either VDD or Vss via a low-resistance path. Also, the outputs of the 

gates assume at all times the value of the Boolean function implemented by the circuit (ignoring, 

once again, the transient effects during switching periods). This is in contrast to the dynamic circuit 

class, which relies on temporary storage of signal values on the capacitance of high-impedance 

circuit nodes. The latter approach has the advantage that the resulting gate is simpler and faster. On 

the other hand, its design and operation are more involved than those of its static counterpart, due to 



an increased sensitivity to noise. 

 
A static CMOS gate is a combination of two networks, called the pull-up network (PUN) 

and the pull-down network (PDN) (Figure). The figure shows a generic N input logic gate where all 

inputs are distributed to both the pull-up and pull-down networks. The function of the PUN is to 

provide a connection between the output and VDD anytime the output of the logic gate is meant to 

be 1 (based on the inputs). Similarly, the function of the PDN is to connect the output to VSS when 

the output of the logic gate is meant to be 0. The PUN and PDN networks are constructed in a 

mutually exclusive fashion such that one and only one of the networks is conducting in steady state. 

In this way, once the transients have settled, a path always exists between VDD and the output F, 

realizing a high output (“one”), or, alternatively, between VSS and F for a low output (“zero”). 

This is equivalent to stating that the output node is always a low-impedance node in steady state. 

In constructing the PDN and PUN networks, the following observations should be kept in mind, 

1) A transistor can be thought of as a switch controlled by its gate signal. An NMOS switch is 

on when the controlling signal is high and is off when the controlling signal is low. A PMOS 

transistor acts as an inverse switch that is on when the controlling signal is low and off when the 

controlling signal is high. 

2) The PDN is constructed using NMOS devices, while PMOS transistors are used in the 

PUN. The primary reason for this choice is that NMOS transistors produce “strong zeros,” and 

PMOS devices generate “strong ones”. To illustrate this, consider the examples shown in 

Figure. In Figure 6.3a, the output capacitance is initially charged to VDD. Two possible 

discharge scenario’s are shown. An NMOS device pulls the output all the way down to GND, 

while a PMOS lowers the output no further than |VTp| — the PMOS turns off at that point, and 

stops contributing discharge current. NMOS transistors are hence the preferred devices in the 



PDN. Similarly, two alternative approaches to charging up a capacitor are shown in Figure 6.3b, 

with the output load initially at GND. A PMOS switch succeeds in charging the output all the 

way to VDD, while the NMOS device fails to raise the output above VDD-VTn. This explains why 

PMOS transistors are preferentially used in a PUN. 

3) A set of construction rules can be derived to construct logic functions (Figure). NMOS 

devices connected in series corresponds to an AND function. With all the inputs high, the series 

combination conducts and the value at one end of the chain is transfered to the other end. 

Similarly, NMOS transistors connected in parallel represent an OR function. A conducting path 

exists between the output and input terminal if at least one of the inpurs is high. Using similar 

arguments, construction rules for PMOS networks can be formulated. A series connection of 

PMOS conducts if both inputs are low, representing a NOR function (A.B = A+B), while 

PMOS transistors in parallel implement a NAND (A+B = A·B. 

4) Using De Morgan’s theorems ((A + B) = A·B and A·B = A + B), it can be shown that the 

pull-up and pull-down networks of a complementary CMOS structure are dual networks. This 

means that a parallel connection of transistors in the pull-up network corresponds to a series 

connection of the corresponding devices in the pull-down network, and vice versa. Therefore, to 

construct a CMOS gate, one of the networks (e.g., PDN) is implemented using combinations of 

series and parallel devices. The other network (i.e., PUN) is obtained using duality principle by 

walking the hierarchy, replacing series subnets with parallel subnets, and parallel subnets with 

series subnets. The complete CMOS gate is constructed by combining the PDN with the PUN. 

5) The complementary gate is naturally inverting, implementing only functions such as 

NAND, NOR, and XNOR. The realization of a non-inverting Boolean function (such as AND 

OR, or XOR) in a single stage is not possible, and requires the addition of an extra inverter stage. 

6) The number of transistors required to implement an N-input logic gate is 2N. 



CMOS NAND GATE 

 

Figure shows a two-input NAND gate (F = A·B). The PDN network consists of two NMOS devices 

in series that conduct when both A and B are high. The PUN is the dual network, and consists of 

two parallel PMOS transistors. This means that F is 1 if A = 0 or B = 0, which is equivalent to F = 

A·B. The truth table for the simple two input NAND gate is given in Table 

 It can be verified that the output F is always connected to either VDD or GND, but never to 

both at the same time. 

 

Design Consideration: 

The important point to take away from the above discussion is that the noise margins are 

input pattern dependent. For the above example, a smaller input glitch will cause a transition at the 

output if only one of the inputs makes a transition. Therefore, this condition has a lower low noise 

margin. A common practice when characterizing gates such as NAND and NOR is to connect all 

the inputs together. This unfortunately does not represent the worst- case static behavior. The data 

dependencies should be carefully modelled. 

The computation of propagation delay proceeds in a fashion similar to the static inverter. 

For the purpose of delay analysis, each transistor is modeled as a resistor in series with an ideal 

switch. The value of the resistance is dependent on the power supply voltage and an equivalent 

large signal resistance, scaled by the ratio of device width over length, must be used. The logic is 

transformed into an equivalent RC network that includes the effect of internal node capacitances. 

 

CMOS NOR GATE 

 

The CMOS implementation of a NOR gate (F = A + B)’ is shown in Figure 6.10. The output 

of this network is high, if and only if both inputs A and B are low. The worst-case pull- down 

transition happens when only one of the NMOS devices turns on (i.e., if either A or B is high). 

Assume that the goal is to size the NOR gate such that it has approximately the same delay as 



an inverter with the following device sizes: NMOS 0.5mm/0.25mm and PMOS 1.5mm/0.25mm. 

 

Since the pull-down path in the worst case is a single device, the NMOS devices (M1 and 

M2) can have the same device widths as the NMOS device in the inverter. For the output to be 

pulled high, both devices must be turned on. Since the resistances add, the devices must be made 

two times larger compared to the PMOS in the inverter (i.e., M3 and M4 must have a size of 

3mm/0.25mm). Since PMOS devices have a lower mobility relative to NMOS devices, stacking 

devices in series must be avoided as much as possible. A NAND implementation is clearly prefered 

over a NOR implementation for implementing generic logic. 

Compound gates 

Using complementary CMOS logic, consider the synthesis of a complex CMOS gate whose 

function is F = {D + A· (B +C)}’. The first step in the synthesis of the logic gate is to derive the 

pull-down network as shown in Figure 6.6a by using the fact that NMOS devices in series 

implements the AND function and parallel device implements the OR function. The next step is to 

use duality to derive the PUN in a hierarchical fashion. The PDN network is broken into smaller 

networks (i.e., subset of the PDN) called sub-nets that simplify the derivation of the PUN. In 



 

Figure, the subnets (SN) for the pull-down network are identified At the top level, SN1 and 

SN2 are in parallel so in the dual network, they will be in series. Since SN1 consists of a single 

transistor, it maps directly to the pull-up network. On the other hand, we need to recursively apply 

the duality rules to SN2. Inside SN2, we have SN3 and SN4 in series so in the PUN they will 

appear in parallel. Finally, inside SN3, the devices are in parallel so they will appear in series in 

the PUN. The complete gate is shown in Figure 6.6c. The reader can verify that for every possible 

input cobmination, there always exists a path to either VDD or GND. 

 

LATCHES AND REGISTERS 

Latch using NAND gates 

Figure shows a SR latch using two NAND2 gates. Note in order to hold (preserve) a state, 

both of the external trigger inputs must be equal to logic “1”. The state of the circuit can be 

changed by pulling the set input or reset input to zero. The gate level schematic and the 

corresponding block diagram representation of the NAND-based SR latch are shown in Figure. 

 



  

 

 

Note that a NAND-based SR latch responds to an active low input signals, while the 

NOR-based SR latch responds to an active high inputs. The small circles at the S and R input 

terminals indicate that the circuit responds to active low input signals. The truth table of the 

NAND SR latch is also shown in Figure. The same approach used in the timing analysis of the 

NOR-based SR latches can be applied to NAND-based SR latches. While there is not-allowed input 

combination for the JK latch, there is still a potential problem. If both inputs are equal to logic “1” 

during the active phase of the clock pulse, the output of the circuit will oscillate (toggle) 

continuously until either clock becomes inactive (CK goes to zero), or one of the input signals goes 

to zero. 

To prevent this undesirable timing problem, the clock pulse width must be made smaller than 

the input to output propagation delay of the JK latch circuit (thus the clock signal must go low 

before the output has an opportunity to switch again, which prevents uncontrolled oscillation). 

This clock constraint is difficult to implement for most practical applications. 

 

CONCLUSION: 

 

The VLSI designer’s challenge is to engineer a system that meets speed requirements 

while consuming little power or area, operating reliably, and taking little time to design. Circuit 

simulation is an important tool for calculating delay and will be discussed in depth in Chapter 5, 

but it takes too long to simulate every possible design; is prone to garbagein, garbage-out 

mistakes; and doesn’t give insight into why a circuit has a particular delay or how the circuit 

should be changed to improve delay. The designer must also have simple models to quickly 

estimate performance by hand and explain why some circuits are better than others. 

Although transistors are complicated devices with nonlinear current-voltage and 

capacitance-voltage relationships, for the purpose of delay estimation in digital circuits, they can 

be approximated quite well as having constant capacitance and an effective resistance R when 

ON. Logic gates are thus modeled as RC networks. The Elmore delay model estimates the delay 

of the network as the sum of each capacitance times the resistance through which it must be 

charged or discharged. Therefore, the gate delay consists of a parasitic delay (accounting for 

the gate driving its own internal parasitic capacitance) plus an effort delay (accounting for the 

gate driving an external load). The effort delay depends on the electrical effort (the ratio of load 

capacitance to input capacitance, also called fanout) and the logical effort (which characterizes 

the current driving capability of the gate relative to an inverter with equal input capacitance). Even 



  

 

 

in advanced fabrication processes, the delay vs. electrical effort curve fits a straight line very 

well. The method of Logical Effort builds on this linear delay model to help us quickly 

estimate the delay of entire paths based on the effort and parasitic delay of the path. We will 

use Logical Effort in subsequent chapters to explain what makes circuits fast. 

 

POST MCQ: 

1. The ratio of rise time to fall time can be equated to ___________ 

a) βn/βp 

b) βp/βn 

c) βp*βn 

d) βp/2βn 

2. Rise time and fall time is _____ to load capacitance CL. 

a) directly proportional 

b) inversely proportional 

c) exponentially equal 

d) not related 

3. The value µn is equal to ___________ 

a) µp 
b) 0.5µp 

c) 1.5µp 

d) 2.5µp 

4. What is the total delay of an nMOS pair? 

a) fƮ 

b) 2fƮ 

c) 5fƮ 
d) 4fƮ 

5. Register cell consists of 

a) inverter 

b) pass transistor 

c) inverter & pass transistor 

d) none of the mentioned 

 



  

 

 

UNIT IV 

ASYNCHRONOUS SEQUENTIAL LOGIC 

PRE MCQ: 

1. Approach used for design process are 

a) circuit symbols 

b) logic symbols 

c) stick diagrams 

d) all of the mentioned 
2. Two metal layers can be joined by using 

a) contact cut 

b) wire 

c) via 

d) glass 

3. The bottom subfunction is called as 

a) lower function 
b) low cell 

c) leaf cell 

d) bottom cell 

4.  Regularity is the ratio of 

a) total transistors in the chip to total transistors that must be designed in detail 

b) total transistors that must be designed in detail to total transistors in a chip 

c) total transistors to total components 
d) total charge storage components to charge dissipating components 

5. Design gives a detailed 

a) logic circuit design 

b) topology of communication 

c) colour codes of the layers 

d) functions of layers 

THEORY: 

GENERAL SYSTEM DESIGN 

 

General Considerations 

 

 Lower unit cost 

 Higher reliability 

 Lower power dissipation, lower weight and lower volume 

 Better performance 

 Enhanced repeatability 

 Possibility of reduced design/development periods 

 



  

 

 

Some Problems: 

1. How to design complex systems in a reasonable time & with reasonable effort 

2. The nature of architectures best suited to take full advantage of VLSI and the 

technology 

3. The testability of large/complex systems once implemented on silicon 

 

Some Solution 

 
Problem 1 & 3 are greatly reduced if two aspects of standard practices are accepted. 

1. a) Top-down design approach with adequate CAD tools to do the job 

b) Partitioning the system sensibly 

c) Aiming for simple interconnections 

d) High regularity within subsystem 

e) Generate and then verify each section of the design 

2. Devote significant portion of total chip area to test and diagnostic facility 

3. Select architectures that allow design objectives and high regularity in realization 

Illustration of design processes 

1. Structured design begins with the concept of hierarchy 

2. It is possible to divide any complex function into less complex sub functions that is up to leaf 

cells 

3. Process is known as top-down design 

4. As a systems complexity increases, its organization changes as different factors become 

relevant to its creation 

5. Coupling can be used as a measure of how much submodels interact 

6. It is crucial that components interacting with high frequency be physically proximate, since one 

may pay severe penalties for long, high-bandwidth interconnects 

7. Concurrency should be exploited – it is desirable that all gates on the chip do useful work most 

of the time 

8. Because technology changes so fast, the adaptation to a new process must occur in a short time. 

• Conventional circuit symbols 

• Logic symbols 

• Stick diagram 

• Any mixture of logic symbols and stick diagram that is convenient at a stage 

• Mask layouts 

• Architectural block diagrams and floor plans 



  

 

 

DESIGN OF ALU SUBSYSTEMS 

An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic 

operations. It represents the fundamental building block of the central processing unit (CPU) of a 

computer. Modern CPUs contain very powerful and complex ALUs. In addition to ALUs, modern 

CPUs contain a control unit (CU). Most of the operations of a CPU are performed by one or more 

ALUs, which load data from input registers. A register is a small amount of storage available as 

part of a CPU. The control unit tells the ALU what operation to perform on that data, and the 

ALU stores the result in an output register. The control unit moves the data between these 

registers, the ALU, and memory. 

 
 

ALUs are implemented using lower-level components such as logic gates, including and, 

or, not gates and multiplexers. These building blocks work with individual bits. In principle, an 

ALU is built from 32 separate 1-bit ALUs. Typically, one constructs separate hardware blocks 

for each task (e.g., arithmetic and logical operations), where each operation is applied to the 32-bit 

registers in parallel, and the selection of an operation is controlled by a multiplexer. The 

advantage of this approach is that it is easy to add new operations to the instruction set, simply 

by associating an operation with a multiplexer control code. This can be done provided that the 

mux has sufficient capacity. Otherwise, new data lines must be added to the mux(es), and the 

CPU must be modified to accomodate these changes. 

And/Or Operations. As shown in Figure, a simple (1-bit) ALU operates in parallel, 



  

 

 

producing all possible results that are then selected by the multiplexer (represented by an oval 

shape at the output of the and / or gates. The output C is thus selected by the multiplexer. (Note: If 

the multiplexer were to be applied at the input(s) rather than the output, twice the amount of 

hardware would be required, because there are two inputs versus one output.) 

Different operation as carried out by ALU can be categorized as follows, logical 

operations − These include operations like AND, OR, NOT, XOR, NOR, NAND, etc. 

Bit-Shifting Operations − This pertains to shifting the positions of the bits by a certain number of 

places either towards the right or left, which is considered a multiplication or division 

operations. 

Arithmetic operations − This refers to bit addition and subtraction. Although multiplication and 

division are sometimes used, these operations are more expensive to make. Multiplication and 

subtraction can also be done by repetitive additions and subtractions respectively. 

An ALU can be designed by engineers to calculate many different operations. When the 

operations become more and more complex, then the ALU will also become more and more 

expensive and also takes up more space in the CPU and dissipates more heat. That is why 

engineers make the ALU powerful enough to ensure that the CPU is also powerful and fast, but 

not so complex as to become prohibitive in terms of cost and other disadvantages 

ALU Performance Issues 

When estimating or measuring ALU performance, one wonders if a 32-bit ALU is as fast 

as a 1-bit ALU - what is the degree of parallelism, and do all operations execute in parallel? In 

practice, some operations on N-bit operands (e.g., addition with sequential propagation of 

carries) take O(N) time. Other operations, such as bitwise logical operations, take O(1) time. 

Since addition can be implemented in a variety of ways, each with a certain level of parallelism, it is 

wise to consider the possibility of a full adder being a computational bottleneck in a simple ALU. 

We previously discussed the ripple-carry adder (Figure 3.10) that propagates the carry bit from 

stage i to stage i+1. It is readily seen that, for an N-bit input, O(N) time is required to propagate 

the carry to the most significant bit. In contrast, the fastest N-bit adder uses O(log2N) stages in a 

tree-structured configuration with N-1 one-bit adders. Thus, the complexity of this technique is 

O(log2N) work. In a sequential model of computation, this translates to O(log2N) time. If one is 

adding smaller numbers (e.g., up to 10-bit integers with current memory technology), then 

alookup table can be used that (1) forms a memory address A by concatenating binary 

representations of the two operands, and (2) produces a result stored in memory that is accessed 



  

 

 

using A. This takes O(1) time, that is dependent upon memory bandwidth. 



  

 

 

ADDERS 

 

Single-Bit Addition 

 

The half adder of Figure 11.1(a) adds two single-bit inputs, A and B. The result is 0, 1, or 2, 

so two bits are required to represent the value; they are called the sum S and carry-out Cout. The 

carry-out is equivalent to a carry-in to the next more significant column of a multibit adder, so it 

can be described as having double the weight of the other bits. If multiple adders are to be 

cascaded, each must be able to receive the carry-in. Such a full adder as shown in Figure has a third 

input called C or Cin. 

 
 

The truth tables for the half adder and full adder are given in Tables. For a full adder, it is 

sometimes useful to define Generate (G), Propagate (P), and Kill (K) signals. The adder generates a 

carry when Cout is true independent of Cin, so G = A · B. The adder kills a carry when Cout is false 

independent of Cin, so K = (A ·  B)’ = (A + B)’. The adder propagates a carry; i.e., it produces a 

carry-out if and only if it receives a carry-in, when exactly one input is true: P = A (exor) B. 

 
 
From the truth table, the half adder logic is, 
 



  

 

 

and the full adder logic is, 
 

 
The most straightforward approach to designing an adder is with logic gates. Figure shows a 

half adder. Figure shows a full adder at the gate (a) and transistor (b) levels. The carry gate is also 

called a majority gate because it produces a 1 if at least two of the three inputs are 1. 

 
 

The full adder of Figure employs 32 transistors (6 for the inverters, 10 for the majority gate, 

and 16 for the 3-input XOR). A more compact design is based on the observation that S can be 

factored to reuse the Cout term as follows: 

 
Such a design is shown at the gate (a) and transistor (b) levels in Figure 11.4 and uses only 28 

transistors. Note that the pMOS network is identical to the nMOS network rather than being the 

conduction complement, so the topology is called a mirror adder. This simplification reduces the 

number of series transistors and makes the layout more uniform. It is possible because the addition 

function is symmetric. i.e., the function of complemented inputs is the complement of the function. 



  

 

 

 

The mirror adder has a greater delay to compute S than Cout. In carry-ripple adders (Section 

11.2.2.1), the critical path goes from C to Cout through many full adders, so the sizes optimized to 

favor the critical path using a number of techniques: 

Feed the carry-in signal (C) to the inner inputs so the internal capacitance is already 

discharged. Make all transistors in the sum logic whose gate signals are connected to the carryin and 

carry logic minimum size (1 unit). This minimizes the branching effort on the critical path. Keep 

routing on this signal as short as possible to reduce interconnect capacitance. 

Determine widths of series transistors by logical effort and simulation. Build an asymmetric gate 

that reduces the logical effort from C to Cout at the expense of effort to S. Use relatively large 

transistors on the critical path so that stray wiring capacitance is a small fraction of the overall 

capacitance. 

Remove the output inverters and alternate positive and negative logic to reduce delay and transistor 

count to 24. 



  

 

 

Carry-Propagate Addition 

N-bit adders take inputs {AN, …, A1}, {BN, …, B1}, and carry-in Cin, and compute the 

sum {SN, …, S1} and the carry-out of the most significant bit Cout, as shown in Figure. 

(Ordinarily, this text calls the least significant bit A0 rather than A1. However, for adders, the 

notation developed on subsequent pages is more graceful if column 0 is reserved to handle the 

carry.) They are called carry-propagate adders (CPAs) because the carry into each bit can influence 

the carry into all subsequent bits. For example, Figure shows the addition 11112 + 00002 + 0/1, in 

which each of the sum and carry bits is influenced by Cin. The simplest design is the carry-ripple 

adder in which the carry-out of one bit is simply connected as the carry-in to the next. Faster adders 

look ahead to predict the carry-out of a multibit group. This is usually done by computing group PG 

signals to indicate whether the multibit group will propagate a carry-in or will generate a carry-out. 

Long adders use multiple levels of lookahead structures for even more speed. 

Carry-Ripple Adder 

 

An N-bit adder can be constructed by cascading N full adders, as shown in Figure 11.11(a) 

for N = 4. This is called a carry-ripple adder (or ripple-carry adder). The carry-out of bit i, Ci, is 

the carry-in to bit i + 1. This carry is said to have twice the weight of the sum Si. The delay of the 

adder is set by the time for the carries to ripple through the N stages, so the tC->Cout delay should 

be minimized. 

 



  

 

 

This delay can be reduced by omitting the inverters on the outputs, as was done in Figure 

11.4(c). Because addition is a self-dual function (i.e., the function of complementary inputs is the 

complement of the function), an inverting full adder receiving complementary inputs produces true 

outputs. Figure (b) shows a carry ripple adder built from inverting full adders. Every other stage 

operates on complementary data. The delay inverting the adder inputs or sum outputs is off the 

critical ripple-carry path. 

Carry Generation and Propagation 

 

This section introduces notation commonly used in describing faster adders. Recall that the 

P (propagate) and G (generate) signals were defined. We can generalize these signals to describe 

whether a group spanning bits i…j, inclusive, generate a carry or propagate a carry. A group of bits 

generates a carry if its carry-out is true independent of the carry in; it propagates a carry if its 

carry-out is true when there is a carry-in. These signals can be defined recursively for i □ k > j as, 

 
with the base case, 

 
 
In other words, a group generates a carry if the upper (more significant) or the lower portion 

generates and the upper portion propagates that carry. The group propagates a carry if both the 

upper and lower portions propagate the carry.2 The carry-in must be treated specially. Let us define 

C0 = Cin and CN = Cout. Then we can define generate and propagate signals for bit 0 as, 

Observe that the carry into bit i is the carry-out of bit i–1 and is Ci–1 = Gi–1:0. This is an important 

relationship; group generate signals and carries will be used synonymously in the subsequent 

sections. We can thus compute the sum for bit i using EQ (11.2) as, 

 



  

 

 

 
Hence, addition can be reduced to a three-step process:  

1. Computing bitwise generate and propagate signals using EQs (11.5) and (11.6) 

2. Combining PG signals to determine group generates Gi–1:0 for all N > i > 1 using EQ 
(11.4) 

3. Calculating the sums using EQ (11.7) 

These steps are illustrated in Figure 11.12. The first and third steps are routine, so most of the 

attention in the remainder of this section is devoted to alternatives for the group PG logic with 

different trade-offs between speed, area, and complexity. Some of the hardware can be shared in 

the bitwise PG logic, as shown in Figure. 

 

Carry-Skip Adder 

 

The critical path of CPAs considered so far involves a gate or transistor for each bit of the 

adder, which can be slow for large adders. The carry-skip (also called carry-bypass) adder, first 

proposed by Charles Babbage in the nineteenth century and used for many years in mechanical 

calculators, shortens the critical path by computing the group propagate signals for each carry chain 

and using this to skip over long carry ripples. Figure shows a carry skip adder built from 4-bit 

groups. The rectangles compute the bitwise propagate and generate signals (as in Figure, and also 

contain a 4-input AND gate for the propagate signal of the 4-bit group. The skip multiplexer selects 

the group carry-in if the group propagate is true or the ripple adder carry-out otherwise. 

The critical path through Figure begins with generating a carry from bit 1, and then 

propagating it through the remainder of the adder. The carry must ripple through the next three 



  

 

 

bits, but then may skip across the next two 4-bit blocks. Finally, it must ripple through the final 4-

bit block to produce the sums. This is illustrated in Figure. The 4-bit ripple chains at the top of the 

diagram determine if each group generates a carry. The carry skip chain in the middle of the 

diagram skips across 4-bit blocks. Finally, the 4-bit ripple chains with the blue lines represent the 

same adders that can produce a carry-out when a carry-in is bypassed to them. Note that the final 

AND-OR and column 16 are not strictly necessary because Cout can be computed in parallel with 

the sum XORs using EQ (11.11). 

 
 

The critical path of the adder from Figures involves the initial PG logic producing a carry 

out of bit 1, three AND-OR gates rippling it to bit 4, three multiplexers bypassing it to C12, 3 

AND-OR gates rippling through bit 15, and a final XOR to produce S16. The multiplexer is an 

AND22-OR function, so it is slightly slower than the AND-OR function. In general, an N-bit carry-

skip adder using k n-bit groups (N = n × k) has a delay of 

 



  

 

 

Carry-Lookahead Adder 

 

The carry-lookahead adder (CLA) is similar to the carry-skip adder, but computes group 

generate signals as well as group propagate signals to avoid waiting for a ripple to determine if 

the first group generates a carry. Such an adder is shown in Figure 11.21 and its PG network is 

shown in Figure using valency-4 black cells to compute 4-bit group PG signals. In general, a CLA 

using k groups of n bits each has a delay of 

 
where tpg(n) is the delay of the AND-OR-AND-OR-…-AND-OR gate computing the valency- n 

generate signal. This is no better than the variable-length carry-skip adder in Figure 11.19 and 

requires the extra n-bit generate gate, so the simple CLA is seldom a good design choice. However, 

it forms the basis for understanding faster adders presented in the subsequent sections. 

 
 

CLAs often use higher-valency cells to reduce the delay of the n-bit additions by computing 

the carries in parallel. Figure shows such a CLA in which the 4-bit adders are built using 

Manchester carry chains or multiple static gates operating in parallel. 

Carry-Select Adders 

 

The critical path of the carry-skip and carry-lookahead adders involves calculating the carry 

into each n-bit group, and then calculating the sums for each bit within the group based on the 

carry-in. A standard logic design technique to accelerate the critical path is to precompute the 

outputs for both possible inputs, and then use a multiplexer to select between the two output 

choices. The carry-select adder shown in Figure does this with a pair of n-bit adders in each group. 

One adder calculates the sums assuming a carry-in of 0 while the other calculates the sums 

assuming a carry-in of 1. The actual carry triggers a multiplexer that chooses the appropriate 

sum. The critical path delay is 



  

 

 

 
 

 
 

The two n-bit adders are redundant in that both contain the initial PG logic and final sum 

XOR. It reduces the size by factoring out the common logic and simplifying the multiplexer to a 

gray cell, as shown in Figure. This is sometimes called a carry increment adder. It uses a short ripple 

chain of black cells to compute the PG signals for bits within a group. The bits spanned by each 

group are annotated on the diagram. When the carry-out from the previous group becomes available, 

the final gray cells in each column determine the carry-out, which is true if the group generates a 

carry or if the group propagates a carry and the previous group generated a carry. The carry-

increment adder has about twice as many cells in the PG network as a carry-ripple adder. The 

critical path delay is about the same as that of a carry-select adder because a mux and XOR are 

comparable, but the area is smaller. 

 
 

MULTIPLIERS 

 

Multiplication is less common than addition, but is still essential for microprocessors, digital 



  

 

 

signal processors, and graphics engines. The most basic form of multiplication consists of forming 

the product of two unsigned (positive) binary numbers. This can be accomplished through the 

traditional technique taught in primary school, simplified to base 2. For example, the multiplication 

of two positive 6-bit binary integers, 2510 and 3910, proceeds as shown in Figure. 

 

 
M × N-bit multiplication P = Y × X can be viewed as forming N partial products of M bits 

each, and then summing the appropriately shifted partial products to produce an M+ N-bit result P. 

Binary multiplication is equivalent to a logical AND operation. Therefore, generating partial 

products consists of the logical ANDing of the appropriate bits of the multiplier and multiplicand. 

Each column of partial products must then be added and, if necessary, any carry values passed to 

the next column. We denote the multiplicand as, 

Y = {yM–1, yM–2, …, y1, y0} 

and the multiplier as, 

X = {xN–1, xN–2, …, x1, x0}. 

For unsigned multiplication, the product is given in EQ (11.31). Figure 11.72 illustrates the 

generation, shifting, and summing of partial products in a 6 × 6-bit multiplier. 

 



  

 

 

Large multiplications can be more conveniently illustrated using dot diagrams. Figure 

shows a dot diagram for a simple 16 × 16 multiplier. Each dot represents a placeholder for a 

single bit that can be a 0 or 1. The partial products are represented by a horizontal boxed row of 

dots, shifted according to their weight. The multiplier bits used to generate the partial products 

are shown on the right. 

 
 

There are a number of techniques that can be used to perform multiplication. In general, the 

choice is based upon factors such as latency, throughput, energy, area, and design complexity. 

An obvious approach is to use an M + 1-bit carry-propagate adder (CPA) to add the first two 

partial products, then another CPA to add the third partial product to the running sum, and so 

forth. Such an approach requires N – 1 CPAs and is slow, even if a fast CPA is employed. More 

efficient parallel approaches use some sort of array or tree of full adders to sum the partial 

products. We begin with a simple array for unsigned multipliers, and then modify the array to 

handle signed two’s complement numbers using the Baugh-Wooley algorithm. The number of 

partial products to sum can be reduced using Booth encoding and the number of logic levels 

required to perform the summation can be reduced with Wallace trees. Unfortunately, Wallace 

trees are complex to lay out and have long, irregular wires, so hybrid array/tree structures may 

be more attractive. For completeness, we consider a serial multiplier architecture. This was once 

popular when gates were relatively expensive, but is now rarely necessary. 

Array Multiplier 

 

Fast multipliers use carry-save adders (CSAs, see Section 11.2.4) to sum the partial 

products. A CSA typically has a delay of 1.5–2 FO4 inverters independent of the width of the 

partial product, while a carry-propagate adder (CPA) tends to have a delay of 4–15+ FO4 



  

 

 

inverters depending on the width, architecture, and circuit family. 

 
 

Figure shows a 4 × 4 array multiplier for unsigned numbers using an array of CSAs. Each 

cell contains a 2-input AND gate that forms a partial product and a full adder (CSA) to add the 

partial product into the running sum. The first row converts the first partial product into carry-save 

redundant form. Each later row uses the CSA to add the corresponding partial product to the carry-

save redundant result of the previous row and generate a carry-save redundant result. The least 

significant N output bits are available as sum outputs directly from CSAs. The most significant 

output bits arrive in carry-save redundant form and require an M- bit carry-propagate adder to 

convert into regular binary form. In Figure, the CPA is implemented as a carry-ripple adder. The 

array is regular in structure and uses a single type of cell, so it is easy to design and lay- out. 

Assuming the carry output is faster than the sum output in a CSA, the critical path through the array 

is marked on the figure with a dashed line. The adder can easily be pipelined with the placement of 

registers between rows. In practice, circuits are assigned rectangular blocks in the floorplan so the 

parallelogram shape wastes space. Figure shows the same adder squashed to fit a rectangular block. 



  

 

 

A key element of the design is a compact CSA. This not only benefits area but also 

helps performance because it leads to short wires with low wire capacitance. An ideal CSA design 

has approximately equal sum and carry delays because the greater of these two delays limits 

performance. The mirror adder from Figure is commonly used for its compact layout even 

though the sum delay exceeds the carry delay. The sum output can be connected to the faster carry 

input to partially compensate. Note that the first row of CSAs adds the first partial product to a pair 

of 0s. This leads to a regular structure, but is inefficient. At a slight cost to regularity, the first row 

of CSAs can be used to add the first three partial products together. This reduces the number of 

rows by two and correspondingly reduces the adder propagation delay. Yet another way to 

improve the multiplier array performance is to replace the bottom row with a faster CPA such as a 

lookahead or tree adder. In summary, the critical path of an array multiplier involves N–2 CSAs 

and a CPA. 

2. MEMORIES 

Memory arrays often account for the majority of transistors in a CMOS system-on-chip. Arrays 

may be divided into categories as shown in Figure. Programmable Logic Arrays (PLAs) perform 

logic rather than storage functions. Random access memory is accessed with an address and has a 

latency independent of the address. In contrast, serial access memories are accessed sequentially so 

no address is necessary. Content addressable memories determine which address(es) contain data 

that matches a specified key. 

 

Random access memory is commonly classified as read-only memory (ROM) or read/write 

memory (confusingly called RAM). Even the term ROM is misleading because many ROMs 



  

 

 

can be written as well. A more useful classification is volatile vs. non-volatile memory. Volatile 

memory retains its data as long as power is applied, while non-volatile memory will hold data 

indefinitely. RAM is synonymous with volatile memory, while ROM is synonymous with non-

volatile memory. 

Like sequencing elements, the memory cells used in volatile memories can further be 

divided into static structures and dynamic structures. Static cells use some form of feedback to 

maintain their state, while dynamic cells use charge stored on a floating capacitor through an access 

transistor. Charge will leak away through the access transistor even while the transistor is OFF, so 

dynamic cells must be periodically read and rewritten to refresh their state. Static RAMs (SRAMs) 

are faster and less troublesome, but require more area per bit than their dynamic counterparts 

(DRAMs). 

 

Some non-volatile memories are indeed read-only. The contents of a mask ROM are 

hardwired during fabrication and cannot be changed. But many non-volatile memories can be 

written, albeit more slowly than their volatile counterparts. A programmable ROM (PROM) can 

be programmed once after fabrication by blowing on-chip fuses with a special high programming 

voltage. An erasable programmable ROM (EPROM) is programmed by storing charge on a floating 

gate. It can be erased by exposure to ultraviolet (UV) light for several minutes to knock the charge 

off the gate. Then the EPROM can be reprogrammed. Electrically erasable programmable ROMs 



  

 

 

(EEPROMs) are similar, but can be erased in microseconds with on-chip circuitry. Flash 

memories are a variant of EEPROM that erases entire blocks rather than individual bits. Sharing 

the erase circuitry across larger blocks reduces the area per bit. Because of their good density and 

easy in system re-programmability, Flash memories have replaced other non-volatile memories in 

most modern CMOS systems. 

Memory cells can have one or more ports for access. On a read/write memory, each port 

can be read-only, write-only, or capable of both read and write. A memory array contains 2n 

words of 2m bits each. Each bit is stored in a memory cell. Figure shows the organization of a 

small memory array containing 16 4-bit words (n = 4, m = 2). Figure (a) shows the simplest design 

with one row per word and one column per bit. The row decoder uses the address to activate 

one of the rows by asserting the wordline. During a read operation, the cells on this wordline 

drive the bitlines, which may have been conditioned to a known value in advance of the memory 

access. The column circuitry may contain amplifiers or buffers to sense the data. A typical 

memory array may have thousands or millions of words of only 8–64 bits each, which would lead 

to a tall, skinny layout that is hard to fit in the chip floorplan and slow because of the long 

vertical wires. Therefore, the array is often folded into fewer rows of more columns. After 

folding, each row of the memory contains 2k words, so the array is physically organized as 2n–k 

rows of 2m+k columns or bits. Figure 12.2(b) shows a two-way fold (k = 1) with eight rows and 

eight columns. The column decoder controls a multiplexer in the column circuitry to select 2m bits 

from the row as the data to access. Larger memories are generally built from multiple smaller 

subarrays so that the wordlines and bitlines remain reasonably short, fast, and low in power 

dissipation. 

STATIC RAM 

 

We begin with SRAM, the most widely used form of on-chip memory. SRAM also 

illustrates all the issues of cell design, decoding, and column circuitry design. Static RAMs use a 

memory cell with internal feedback that retains its value as long as power is applied. It has the 

following attractive properties: 

Denser than flip-flops 

Compatible with standard CMOS processes Faster than DRAM 

Easier to use than DRAM 

For these reasons, SRAMs are widely used in applications from caches to register files to tables to 

scratchpad buffers. The SRAM consists of an array of memory cells along with the row and 



  

 

 

column circuitry. This section begins by examining the design and operation of each of these 

components. It then considers important special cases of SRAMs, including multiported register 

files, large SRAMs and subthreshold SRAMs. 

SRAM Cells 

A SRAM cell needs to be able to read and write data and to hold the data as long as the 

power is applied. An ordinary flip-flop could accomplish this requirement, but the size is quite 

large. Figure shows a standard 6-transistor (6T) SRAM cell that can be an order of magnitude 

smaller than a flip-flop. The 6T cell achieves its compactness at the expense of more complex 

peripheral circuitry for reading and writing the cells. This is a good trade-off in large RAM arrays 

where the memory cells dominate the area. The small cell size also offers shorter wires and hence 

lower dynamic power consumption. 

The 6T SRAM cell contains a pair of weak cross-coupled inverters holding the state and a 

pair of access transistors to read or write the state. The positive feedback corrects disturbances 

caused by leakage or noise. The cell is written by driving the desired value and its complement onto 

the bitlines, bit and bit_b, then raising the wordline, word. The new data overpowers the cross-

coupled inverters. It is read by precharging the two bitlines high, then allowing them to float. When 

word is raised, bit or bit_b pulls down, indicating the data value. The central challenges in SRAM 

design are minimizing its size and ensuring that the circuitry holding the state is weak enough to 

be overpowered during a write, yet strong enough not to be disturbed during a read. 

SRAM operation is divided into two phases. As described in Section 10.4.6, the phases will 

be called ϕ1 and ϕ2, but may actually be generated from clk and its complement clkb. Assume that 

in phase 2, the SRAM is precharged. In phase 1, the SRAM is read or written. Timing diagrams 

will label the signals as _q1 for qualified clocks (ϕ 1 gated with an enable), _v1 for those that 

become valid during phase 1, and _s1 for those that remain stable throughout phase 1. It is no 

longer common for designers to develop their own SRAM cells. Usually, the fabrication vendor 



  

 

 

will supply cells that are carefully tuned to the particular manufacturing process. Some processes 

provide two or more cells with different speed/density trade-offs. Read and write operations and 

the physical design of the SRAM are as follows. 

Read Operation 

Figure shows a SRAM cell being read. The bitlines are both initially floating high. Without 

loss of generality, assume Q is initially 0 and thus Q_b is initially 1. Q_b and bit_b both should 

remain 1. When the wordline is raised, bit should be pulled down through driver and access 

transistors D1 and A1. At the same time bit is being pulled down, node Q tends to rise. Q is held 

low by D1, but raised by current flowing in from A1. Hence, the driver D1 must be stronger than 

the access transistor A1. Specifically, the transistors must be ratioed such that node Q remains 

below the switching threshold of the P2/D2 inverter. This constraint is called read stability. 

Waveforms for the read operation are shown in Figure as a 0 is read onto bit. Observe that Q 

momentarily rises, but does not glitch badly enough to flip the cell. 

Figure shows the same cell in the context of a full column from the SRAM. During phase 2, 

the bitlines are precharged high. The wordline only rises during phase 1; hence, it can be viewed as 

a _q1 qualified clock. Many SRAM cells share the same bitline pair, which acts as a distributed 

dual-rail footless dynamic multiplexer. The capacitance of the entire bitline must be discharged 

through the access transistor. The output can be sensed by a pair of HI- skew inverters. By raising 

the switching threshold of the sense inverters, delay can be reduced at the expense of noise 

margin. The outputs are dual-rail monotonically rising signals, just as in a domino gate. 

Write Operation 



  

 

 

Figure shows the SRAM cell being written. Again, assume Q is initially 0 and that we wish 

to write a 1 into the cell. bit is precharged high and left floating. bit_b is pulled low by a write 

driver. We know on account of the read stability constraint that bit will be unable to force Q high 

through A1. Hence, the cell must be written by forcing Q_b low through A2. P2 opposes this 

operation; thus, P2 must be weaker than A2 so that Q_b can be pulled low enough. This constraint 

is called writability. Once Q_b falls low, D1 turns OFF and P1 turns ON, pulling Q high as desired. 

 

Figure (a) again shows the cell in the context of a full column from the SRAM. During phase 

2, the bitlines are precharged high. Write drivers pull the bitline or its complement low during phase 

1 to write the cell. The write drivers can consist of a pair of transistors on each bitline for the data 

and the write enable, or a single transistor driven by the appropriate combination of signals (Figure 

(b)). In either case, the series resistance of the write driver, bitline wire, and access transistor must 

be low enough to overpower the pMOS transistor in the SRAM cell. Some arrays use tristate write 

drivers to improve writability by actively driving one bitline high while the other is pulled low. 

Cell Stability 

To ensure both read stability and writability, the transistors must satisfy ratio constraints. 

The nMOS pulldown transistor in the cross-coupled inverters must be strongest. The access 

transistors are of intermediate strength, and the pMOS pullup transistors must be weak. To achieve 

good layout density, all of the transistors must be relatively small. For example, the pulldowns 



  

 

 

could be 8/2 , the access transistors 4/2, and the pullups 3/3. The SRAM cells must operate 

correctly at all voltages and temperatures despite process variation. 



  

 

 

The stability and writability of the cell are quantified by the hold margin, the read margin, 

and the write margin, which are determined by the static noise margin of the cell in its various 

modes of operation. A cell should have two stable states during hold and read operation, and only 

one stable state during write. The static noise margin (SNM) measures how much noise can be 

applied to the inputs of the two cross-coupled inverters before a stable state is lost (during hold or 

read) or a second stable state is created (during write). 

 

Physical Design 

SRAM cells require clever layout to achieve good density. A traditional design was used 

until the 90 nm generation, and a lithographically friendly design has been used since. Figure (a) 

shows a stick diagram of a traditional 6T cell. 

 



  

 

 

The cell is designed to be mirrored and overlapped to share VDD and GND lines 

between adjacent cells along the cell boundary, as shown in Figure (b). Note how a single 

diffusion contact to the bit-line is shared between a pair of cells. This halves the diffusion 

capacitance, and hence reduces the delay discharging the bitline during a read access. The 

wordline is run in both metal1 and polysilicon; the two layers must occasionally be strapped 

(e.g., every four or eight cells). 

 

3. CONTROL LOGIC IMPLEMENTATION USING PLA’s 

 

Understand how digital systems may be divided into a data path and control logic. 

Appreciate the different ways of implementing control logic. FSM design procedure. Draw the 

state-transition diagram. Check the state diagram. Write state equations. Control logic is a key part 

of a software program that controls the operations of the program. The control logic responds 

to commands from the user, and it also acts on its own to perform automated tasks that have 

been structured into the program. Control logic can be modeled using a state diagram, which is a 

form of hierarchical state machine. These state diagrams can also be combined with flow charts to 

provide a set of computational semantics for describing complex control logic.This mix of state 

diagrams and flow charts is illustrated in the figure on the right, which shows the control logic for 

a simple stopwatch. The control logic takes in commands from the user, as represented by the 

event named “START”, but also has automatic recurring sample time events, as represented by 

the event named “TIC”. 

 
 Ensure all states are represented, including the IDLE state 

 Check that the OR of all transitions leaving a state is TRUE. This is a simple method of 

determining that there is a way out of a state once entered. 

 Verify that the pairwise XOR of all exit transitions is TRUE. This ensures that there are 

not conflicting conditions that would lead to more than one exit- transition becoming 

active at any time. 

 Insert loops into any state if it is not guaranteed to otherwise change on each cycle. 

 Formal FSM verification method 

 Perform conformance checking 
 
Two states are definitely equivalent if they have the same outputs for every possible input 

combination. They have the same next state for every possible input combination (assuming 

they themselves are equivalent). 



  

 

 

 
 

General Design Procedure 

Construct a sequence of input waveforms that includes all relevant situations. Go through the 

sequence from the beginning. Each time an input changes, you must decide: 

• branch back to a previous state if the current situation is materially identical to 

a previous one 

• create a new state otherwise for each state you must ensure that you have specified 

• which state to branch to for every possible input pattern 

• what signals to output for every possible input pattern 
 



  

 

 

Use letters a, b,… to label states; we choose numbers later. • Decide what action to take in 

each state for each of the possible input conditions. Use a Moore machine (i.e. output is constant in 

each state). Easier to design but needs more states & adds output delay. Assume initially in state “a” 

and IN has been low for ages. 

 
 

If IN goes high for two (or more) clock cycles then OUT must go high, whereas if it goes 

high for only one clock cycle then OUT stays low. It follows that the two histories “IN low for 

ages” and “IN low for ages then high for one clock” are different because if IN is high for the next 

clock we need different outputs. Hence we need to introduce state b. If IN goes high for one 

clock and then goes low again, we canforget it ever changed at all. This glitch on IN will not affect 

any of our future actions and so we can just return to state a. If on the other hand we are in state b 

and IN stays high for a second clock cycle, then the output must change. It follows that we need a 

new state, c. The need for state d is exactly the same as for state b earlier. We reach state d at the 

end of an output pulse when IN has returned low for one clock cycle. We don’t change OUT yet 

because it might be a false alarm. If we are in state d and IN remains low for a second clock cycle, 

then it really is the end of the pulse and OUT must go low. We can forget the pulse ever existed 

and just return to state a. 

 

4. TESTING OF VLSI CIRCUITS 

 

Need for testing 

Physical defects are likely in manufacturing 

 Missing connections (opens) 

 Bridged connections (shorts) 

 Imperfect doping, processing steps 



  

 

 

 Packaging Yields are generally low 

 Yield = Fraction of good die per wafer Need to weed out bad die before assembly Need 

to test during operation 

 Electromagnetic interference, mechanical stress, electromigration, alpha particles 

Fault Models 

 

To deal with the existence of good and bad parts, it is necessary to propose a fault 

model; i.e., a model for how faults occur and their impact on circuits. The most popular model is 

called the Stuck-At model. The Short Circuit/ Open Circuit model can be a closer fit to reality, 

but is harder to incorporate into logic simulation tools. 

 
 

Stuck-At Faults In the Stuck-At model, a faulty gate input is modeled as a stuck at zero 

(Stuck-At-0, S-A- 0) or stuck at one (Stuck-At-l, S-A-l). This model dates from board-level 

designs, where it was determined to be adequate for modeling faults. Figure 15.11 illustrates 

how an S-A-0 or S-A-1 fault might occur. These faults most frequently occur due to gate oxide 

shorts (the nMOS gate to GND or the pMOS gate to VDD) or metal-to-metal shorts. 

Short-Circuit and Open-Circuit Faults Other models inc lude stuck-open or shor ted 

models. Two bridging or shorted faults are shown in Figure. The short S1 results in an S-A-0 

fault at input A, while short S2 modifies the function of the gate. 



  

 

 

 
 

It is evident that to ensure the most accurate modeling, faults should be modeled at the 

transistor level because it is only at this level that the complete circuit structure is known. For 

instance, in the case of a simple NAND gate, the intermediate node between the series nMOS 

transistors is hidden by the schematic. This implies that test generation should ideally take 

account of possible shorts and open circuits at the switch level. Expediency dictates that most 

existing systems rely on Boolean logic representations of circuits and stuck-at fault modeling. 

Observability 

 

The observability of a particular circuit node is the degree to which you can observe that 

node at the outputs of an integrated circuit (i.e., the pins). This metric is relevant when you want to 

measure the output of a gate within a larger circuit to check that it operates correctly. Given the 

limited number of nodes that can be directly observed, it is the aim of good chip designers to 

have easily observed gate outputs. Adoption of some basic design for test techniques can aid 

tremendously in this respect. Ideally, you should be able to observe directly or with moderate 

indirection (i.e., you may have to wait a few cycles) every gate output within an integrated circuit. 

While at one time this aim was hindered by the expense of extra test circuitry and a lack of 

design methodology, current processes and design practices allow you to approach this ideal.. 

Controllability 

 

The controllability of an internal circuit node within a chip is a measure of the ease of 

setting the node to a 1 or 0 state. This metric is of importance when assessing the degree of 

difficulty of testing a particular signal within a circuit. An easily controllable node would be 

directly settable via an input pad. A node with little controllability, such as the most significant bit 

of a counter, might require many hundreds or thousands of cycles to get it to the right state. Often, 



  

 

 

you will find it impossible to generate a test sequence to set a number of poorly controllable 

nodes into the right state. It should be the aim of good chip designers to make all nodes easily 

controllable. In common with observability, the adoption of some simple design for test 

techniques can aid in this respect tremendously. Making all flip-flops resettable via a global 

reset signal is one step toward good controllability. 

Repeatability 

 

The repeatability of system is the ability to produce the same outputs given the same 

inputs. Combinational logic and synchronous sequential logic is always repeatable when it is 

functioning correctly. However, certain asynchronous sequential circuits are nondeterministic. For 

example, an arbiter may select either input when both arrive at nearly the same time. Testing is 

much easier when the system is repeatable. Some systems with asynchronous interfaces have a 

lock-step mode to facilitate repeatable testing. 

Survivability 

 

The survivability of a system is the ability to continue function after a fault. For 

example, error-correcting codes provide survivability in the event of soft errors. Redundant 

rows and columns in memories and spare cores provide survivability in the event of 

manufacturing defects. Adaptive techniques provide survivability in the event of process 

variation. Some survivability features are invoked automatically by the hardware, while others are 

activated by blowing fuses after manufacturing test. 

Fault Coverage 

 

A measure of goodness of a set of test vectors is the amount of fault coverage it 

achieves. That is, for the vectors applied, what percentage of the chip’s internal nodes were 

checked? Conceptually, the way in which the fault coverage is calculated is as follows. Each 

circuit node is taken in sequence and held to 0 (S-A-0), and the circuit is simulated with the test 

vectors comparing the chip outputs with a known good machine––a circuit with no nodes 

artificially set to 0 (or 1). When a discrepancy is detected between the faulty machine and the 

good machine, the fault is marked as detected and the simulation is stopped. This is repeated for 

setting the node to 1 (S-A-1). In turn, every node is stuck (artificially) at 1 and 0 sequentially. 

The fault coverage of a set of test vectors is the percentage of the total nodes that can be detected 

as faulty when the vectors are applied. To achieve world-class quality levels, circuits are 



  

 

 

required to have in excess of 98.5% fault coverage. The Verification Methodology Manual 

[Bergeron05] is the bible for fault coverage techniques. 

 
 

Iddq testing is a method for testing CMOS integrated circuits for the presence of 

manufacturing faults. It relies on measuring the supply current (Idd) in the quiescent state (when 

the circuit is not switching and inputs are held at static values). The current consumed in the state 

is commonly called Iddq for Idd (quiescent) and hence the name. Iddq testing uses the principle that 

in a correctly operating quiescent CMOS digital circuit, there is no static current path between the 

power supply and ground, except for a small amount of leakage. Many common semiconductor 

manufacturing faults will cause the current to increase by orders of magnitude, which can be easily 

detected. This has the advantage of checking the chip for many possible faults with one 

measurement. Another advantage is that it may catch faults that are not found by conventional 

stuck-at fault test vectors. Iddq testing is somewhat more complex than just measuring the supply 

current. If a line is shorted to Vdd, for example, it will still draw no extra current if the gate driving 

the signal is attempting to set it to '1'. However, a different vector set that attempts to set the signal 

to 0 will show a large increase in quiescent current, signalling a bad part. Typical Iddq test vector 

sets may have 20 or so vectors. Note that Iddq test vectors require only controllability, and not 

observability. This is because the observability is through the shared power supply connection. 

Iddq testing has many advantages: 

□ It is a simple and direct test that can identify physical defects. 



  

 

 

□ The area and design time overhead are very low. 
 

□ Test generation is fast. 

 
□ Test application time is fast since the vector sets are small. 

 
□ It catches some defects that other tests, particularly stuck-at logic tests, do not. 

 
Drawback: Compared to scan testing, Iddq testing is time consuming, and then more expensive, 

since is achieved by current measurements that take much more time than reading digital pins in 

mass production. 

AUTOMATIC TEST PATTERN GENERATION (ATPG) 

 

Historically, in the IC industry, logic and circuit designers implemented the functions at 

the RTL or schematic level, mask designers completed the layout, and test engineers wrote the 

tests. In many ways, the test engineers were the Sherlock Holmes of the industry, reverse 

engineering circuits and devising tests that would test the circuits in an adequate manner. For the 

longest time, test engineers implored circuit designers to include extra circuitry to ease the burden 

of test generation. Happily, as processes have increased in density and chips have increased in 

complexity, the inclusion of test circuitry has become less of an overhead for both the designer and 

the manager worried about the cost of the die. In addition, as tools have improved, more of the 

burden for generating tests has fallen on the designer. To deal with this burden, Automatic Test 

Pattern Generation (ATPG) methods have been invented. The use of some form of ATPG is 

standard for most digital designs. 

It is the process of generating test patterns for a given fault model. If we go by 

exhaustive testing, in the worst case, we may require 2n (where n stands for no. of primary 

inputs) assignments to be applied for finding test vector for a single stuck-at fault. It is 

impossible for us to manually use exhaustive testing or path sensitization method to generate a test 

pattern for chips consisting of millions of transistors. Hence, we need an automated process, 

a.k.a. Automatic Test Pattern Generation (ATPG). 

A cycle of ATPG can generally be divided into two distinct phases: 1) creation of the test; 

and 2) application of the test. During the creation of the test, appropriate models for the device 

circuit are developed at gate or transistor level in such a way that the output responses of a faulty 

device for a given set of inputs will differ from those of a good device. This generation of test 

is basically a mathematical process that can be done in three ways: 1) by manual methods; 2) 



  

 

 

by algorithmic methods (with or without heuristics); and 3) by pseudo- random methods. The 

software used for complex ATPG applications are quite expensive, but the process of generating a 

test needs to be done only once at the end of the design process. 

When creating a test, the goal should be to make it as efficient in memory space and time 

requirements as much as possible. As such, the ATPG process must generate the minimum or 

near minimum set of vectors needed to detect all the important faults of a device. The main 

considerations for test creation are: 1) the time needed to construct the minimal test set; 2) the 

size of the pattern generator, or hardware/software system needed to properly stimulate the 

devices under test; 3) the size of the testing process itself; 4) the time needed to load the test 

patterns; and 5) the external equipment required (if any). 

 
 

Examples of ATPG algorithmic methods that are in wide use today include the D- 

Algorithm, the PODEM, and the FAN. Pattern generation through any of these algorithmic 

methods require what is known as 'path sensitization.' Path sensitization refers to finding a path in 

the circuit that will allow an error to show up at an observable output of a device if it is faulty. 

For example, in a two-input AND gate, sensitizing the path of one input requires the other input 

to be set to '1'. Most algorithmic generation methods also refer to the notations D and D'. These 

notations were introduced by the D algorithm and have been adopted by other algorithms since 

then. D simply stands for a '1' in a good circuit and a '0' in a faulty one. On the other hand, D', 

which is the opposite of D, stands for a '0' in a good circuit and '1' in a faulty circuit. Thus, 



  

 

 

propagating a D or D' from the inputs to the output simply means applying a set of inputs to a 

device to make its output exhibit an 'error' if a fault within the circuit exists. 

Algorithmic pattern generation basically consists of the following steps: 1) fault 

selection, or choosing a fault that needs to be detected; 2) initial assignment, or finding an input 

pattern that sets up a D or D' at the output of the faulty gate; 3) forward drive, or propagating a D 

or D' to an observable output using the shortest path possible; 4) justification, or assigning of values 

to other unassigned inputs in order to justify the assignments made during the forward drive. If an 

inconsistency arises during justification, backtracking or back propagation is performed, i.e., 

forward drive is done again using an alternate path. This recursive cycle is performed until the 

right set of input patterns needed to 'sensitize' a path and propagate the fault to an observable 

output is determined. 

The D algorithm was developed by Roth at IBM in 1966, and was the first 'complete' test 

pattern algorithm designed to be programmable on a computer. A test algorithm is 'complete' if 

it is able to propagate a failure to an observable output if a fault indeed exists. As discussed in the 

previous paragraph, the D algorithm entails finding all sets of inputs to the circuit that will 

bring out a fault within the circuit. A 'primitive D cube of failure', or PDCF, is a set of inputs that 

sensitizes a path for a particular fault within a circuit. The 'propagation D cube', or PDC, is a set 

of inputs that propagates a D from the inputs to the output. 

The D algorithm picks all possible PDCF's for the circuit under test and applies them to 

the circuit with their corresponding PDC's to propagate various faults to the output. While the 

PDCF's and PDC's are being applied, the 'implied' values for other circuit nodes are tested for 

consistency, rejecting sets of inputs that cause a circuit violation. The application and testing of 

various PDCF's and PDC's for a circuit is done repeatedly and recursively, until the minimal set 

of input patterns necessary to test the circuit for the specified faults is determined. 

Commercial ATPG tools can achieve excellent fault coverage. However, they are 

computation-intensive and often must be run on servers or compute farms with many parallel 

processors. Some tools use statistical algorithms to predict the fault coverage of a set of vectors 

without performing as much simulation. Adding scan and built-in self-test, improves the 

observability of a system and can reduce the number of test vectors required to achieve a 

desired fault coverage. The algorithmic methods for test generation are examples of 

'deterministic' ATPG, since the tests are systematically developed with a definite outcome for the 



  

 

 

targeted faults. 



  

 

 

DESIGN FOR TESTABILITY (DFT) 

 

Design for Testability The keys to designing circuits that are testable are controllability and 

observability. Restated, controllability is the ability to set (to 1) and reset (to 0) every node internal 

to the circuit. Observability is the ability to observe, either directly or indirectly, the state of any 

node in the circuit. Good observability and controllability reduce the cost of manufacturing 

testing because they allow high fault coverage with relatively few test vectors. Moreover, they 

can be essential to silicon debug because physically probing internal signals has become so 

difficult. 

We will first cover three main approaches to what is commonly called Design for 

Testability (DFT). These may be categorized as follows: 

Ad hoc testing 
 
Scan-based approaches Built- in self-test (BIST) 

Ad Hoc Testing 

 

Ad hoc test techniques, as their name suggests, are collections of ideas aimed at 

reducing the combinational explosion of testing. They are summarized here for historical 

reasons. They are only useful for small designs where scan, ATPG, and BIST are not available. A 

complete scan-based testing methodology is recommended for all digital circuits. Having said 

that, the following are common techniques for ad hoc testing: 

Partitioning large sequential circuits Adding test points 

Adding multiplexers Providing for easy state reset 

A technique classified in this category is the use of the bus in a bus-oriented system for test 

purposes. Each register has been made loadable from the bus and capable of being driven onto 

the bus. Here, the internal logic values that exist on a data bus are enabled onto the bus for 

testing purposes. Frequently, multiplexers can be used to provide alternative signal paths during 

testing. In CMOS, transmission gate multiplexers provide low area and delay overhead. Any 

design should always have a method of resetting the internal state of the chip within a single 

cycle or at most a few cycles. Apart from making testing easier, this also makes simulation faster as 

a few cycles are required to initialize the chip. 

In general, ad hoc testing techniques represent a bag of tricks developed over the years by 



  

 

 

designers to avoid the overhead of a systematic approach to testing, as will be described in the next 

section. While these general approaches are still quite valid, process densities and chip complexities 

necessitate a structured approach to testing. 

SCAN BASED TECHNIQUE 

 

The scan-design strategy for testing has evolved to provide observability and controllability 

at each register. In designs with scan, the registers operate in one of two modes. In normal mode, 

they behave as expected. In scan mode, they are connected to form a giant shift register called a 

scan chain spanning the whole chip. By applying N clock pulses in scan mode, all N bits of state in 

the system can be shifted out and new N bits of state can be shifted in. Therefore, scan mode gives 

easy observability and controllability of every register in the system. 

 

Modern scan is based on the use of scan registers, as shown in Figure. The scan register is a 

D flip-flop preceded by a multiplexer. When the SCAN signal is deasserted, the register behaves as 

a conventional register, storing data on the D input. When SCAN is asserted, the data is loaded 

from the SI pin, which is connected in shift register fashion to the previous register Q output in the 

scan chain. For the circuit to load the scan chain, SCAN is asserted and CLK is pulsed eight times 

to load the first two ranks of 4-bit registers with data. SCAN is deasserted and CLK is asserted 

for one cycle to operate the circuit normally with predefined inputs. SCAN is then reasserted and 

CLK asserted eight times to read the stored data out. At the same time, the new register contents 

can be shifted in for the next test. Testing proceeds in this manner of serially clocking the data 

through the scan register to the right point in the circuit, running a single system clock cycle and 

serially clocking the data out for observation. In this scheme, every input to the combinational 



  

 

 

block can be controlled and every output can be observed. In addition, running a random pattern 

of 1s and 0s through the scan chain can test the chain itself. 

Test generation for this type of test architecture can be highly automated. ATPG techniques 

can be used for the combinational blocks and, as mentioned, the scan chain is easily tested. The 

prime disadvantage is the area and delay impact of the extra multiplexer in the scan register. 

Designers (and managers alike) are in widespread agreement that this cost is more than offset 

by the savings in debug time and production test cost. 

SELF-TEST APPROACHES: BUILT-IN SELF-TEST (BIST) 

 

Self-test and built-in test techniques, as their names suggest, rely on augmenting circuits to 

allow them to perform operations upon themselves that prove correct operation. These techniques 

add area to the chip for the test logic, but reduce the test time required and thus can lower the 

overall system cost. [Stroud02] offers extensive coverage of the subject from the implementer’s 

perspective. 

 

One method of testing a module is to use signature analysis or cyclic redundancy checking. This 

involves using a pseudo-random sequence generator (PRSG) to produce the input signals for a 

section of combinational circuitry and a signature analyzer to observe the output signals. A PRSG 

of length n is constructed from a linear feedback shift register (LFSR), which in turn is made of n 

flip-flops connected in a serial fashion, as shown in Figure (a). The XOR of particular outputs are 

fed back to the input of the LFSR. An n-bit LFSR will cycle through 2n–1 states before repeating 

the sequence. LFSRs are discussed further in Section 



  

 

 

 They are described by a characteristic polynomial indicating which bits are fed back. A complete 

feedback shift register (CFSR), shown in Figure (b), includes the zero state that may be required in 

some test situations. An n-bit LFSR is converted to an n-bit CFSR by adding an n – 1 input NOR 

gate connected to all but the last bit. When in state 0…01, the next state is 0…00. When in state 

0…00, the next state is 10…0. Otherwise, the sequence is the same. Alternatively, the bottom n bits 

of an n + 1-bit LFSR can be used to cycle through the all zeros state without the delay of the NOR 

gate. 

 
A signature analyzer receives successive outputs of a combinational logic block and 

produces a syndrome that is a function of these outputs. The syndrome is reset to 0, and then 

XORed with the output on each cycle. The syndrome is swizzled each cycle so that a fault in one 

bit is unlikely to cancel itself out. At the end of a test sequence, the LFSR contains the syndrome 

that is a function of all previous outputs. This can be compared with the correct syndrome 

(derived by running a test program on the good logic) to determine whether the circuit is good or 

bad. If the syndrome contains enough bits, it is improbable that a defective circuit will produce the 

correct syndrome. 



  

 

 

The combination of signature analysis and the scan technique creates a structure known as BIST—

for Built-In Self-Test or BILBO—for Built-In Logic Block Observation [Koenemann79]. The 3-bit 

BIST register shown in Figure 15.20 is a scannable, resettable register that also can serve as a 

pattern generator and signature analyzer. C[1:0] specifies the mode of operation. In the reset mode 

(10), all the flip-flops are synchronously initialized to 0. In normal mode (11), the flip-flops behave 

normally with their D input and Q output. In scan mode (00), the flip-flops are configured as a 3-bit 

shift register between SI and SO. Note that there is an inversion between each stage. In test mode 

(01), the register behaves as a pseudo- random sequence generator or signature analyzer. If all the D 

inputs are held low, the Q outputs loop through a pseudo-random bit sequence, which can serve as 

the input to the combinational logic. If the D inputs are taken from the combinational logic output, 

they are swizzled with the existing state to produce the syndrome. In summary, BIST is performed 

by first resetting the syndrome in the output register. Then both registers are placed in the test mode 

to produce the pseudo-random inputs and calculate the syndrome. Finally, the syndrome is shifted 

out through the scan chain. 

 



  

 

 

Various companies have commercial design aid packages that automatically replace 

ordinary registers with scannable BIST registers, check the fault coverage, and generate scripts for 

production testing. As an example, on a WLAN modem chip comprising roughly 1 million gates, a 

full at-speed test takes under a second with BIST. This comes with roughly a 7.3% overhead in 

the core area (but actually zero because the design was pad limited) and a 99.7% fault coverage 

level. The WLAN modem parts designed in this way were fully tested in less than ten minutes on 

receipt of first silicon. This kind of test method is incredibly valuable for productivity in 

manufacturing test generation. 

Memory BIST 

 

On many chips, memories account for the majority of the transistors. A robust testing 

methodology must be applied to provide reliable parts. In a typical MBIST scheme, multiplexers 

are placed on the address, data, and control inputs for the memory to allow direct access during 

test. During testing, a state machine uses these multiplexers to directly write a checkerboard 

pattern of alternating 1s and 0s. The data is read back, checked, then the inverse pattern is also 

applied and checked. ROM testing is even simpler: The contents are read out to a signature 

analyzer to produce a syndrome. 

 

CONCLUSION: 

 

This chapter has presented a range of datapath subsystems. How one goes about designing and 

implementing a given CMOS chip is largely affected by the availability of tools,  the schedule, the 

complexity of the system, and the final cost goals of the chip. In general, the simplest and least 

expensive (in terms of time and money) approach that meets the target goals  should be chosen. 

This chapter has summarized the important issues in CMOS chip testing and has provided some 

methods for incorporating test considerations into chips from the start of the design. Scan is 

now an indispensable technique to observe and control registers because probing signals 

directly has become extremely difficult. The importance of writing adequate tests for both the 

functional verification and manufacturing verification cannot be understated. It is probably the 

single most important activity in any CMOS chip design cycle and usually takes the longest time 

no matter what design methodology is used. If one message is left in your mind after reading 

this chapter, it should be that you are absolutely rigorous about the testing activity surrounding 

a chip project and it should rank first among any design trade-offs. 



  

 

 

 

POST MCQ: 

1. Design for testability is considered in production for chips because: 

a) Manufactured chips are faulty and are required to be tested 
b) The design of chips are required to be tested 

c) Many chips are required to be tested within short interval of time which yields 

timely delivery for the customers 

d) All of the mentioned 

2. For carry skip adder, the minimum total propogation delay can be obtained when m is 

a) sqrt(nk1/k2) 
b) sqrt(2nk1/k2) 

c) sqrt(2k1/nk2) 

d) sqrt(nk1k2/2) 

3.  Latches choosen are 

a) static shift registers 

b) any flipflop 

c) dynamic shift register 
d) multiplexers 

4. The impedance of pull down transistor in nMOS can be given as 

a) 2Rs 

b) 4Rs 

c) 1/2 Rs 

d) 1/4 Rs 

5. Divide and Conquer approach to large and complex circuits for testing is found in: 

a) Partition and Mux Technique  

b) Simplified automatic test pattern generation technique 

c) Scan based technique 

d) All of the mentioned 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

UNIT V 

LOGIC FAMILIES AND PROGRAMMABLE LOGIC DEVICES 

 

POST MCQ:  

1. Which clock is preferred in storage devices? 

a) single phase overlapping clock signal 

b) single phase non overlapping clock signal 

c) two phase overlapping clock signal 

d) two phase non overlapping clock signal 

2. Reading a cell is a _______ operation. 
a) constructive 

b) destructive 

c) semi constructive 

d) semi destructive 

3. Which method is used to determine structural defects? 

a) deterministic test pattern 
b) algorithmic test pattern 

c) random test pattern 

d) exhaustive test pattern 

4. Which method is used for external functional testing? 

a) exhaustive test pattern method 

b) pseudo-exhaustive test pattern method 

c) random test pattern method 
d) pseudo-random test pattern method 

5. The electrical behaviour of a circuit is given using 

a) design rules 

b) floor plan 

c) structures and layouts 

d) mathematical modelling 

 

THEORY 

TYPES OF PROGRAMMABLE LOGIC DEVICES (PLD): 

Programmable Arrays 

 OR Array 
 AND Array 

Classifications of Simple Programmable Logic Devices (SPLD) 

 Read-Only Memory (ROM) 

 Programmable Array Logic (PAL) 



  

 

 

 Programmable Logic Array (PLA) 

 Programmable Logic Sequencer (PLS) 
More complex 

 FPGA (Field Programmable Gate Arrays) 
 CPLD (Complex Programmable Logic Devices) 

 

Classifications of Simple Programmable Logic Devices (SPLD) 

Read Only Memory (ROM / PROM): 

 N-input address lines, m-output data lines. 

 Address lines point locations within ROM that store words of m bits. 

 ROM size is defined by the no. of locations & the word size. 

 A 256 X 4 ROM indicates that the device has 256 storage locations each holding a 4-bit 
word. 

 This ROM would require eight address lines to access 256 locations. 

 ROM of 32 X 8 has 32 memory locations each of 8-bit word and requires 5 address lines. 

 Structure of ROM is as shown below; 

 

 So No. of address lines (Input Lines) = n. 

 No. of data lines (Output Lines) = m. 

 ROM size = 2n X m. 

 Size of decode which is to be used = n X 2n . 

 ROM Consists of an array of semiconductor devices interconnected to store an array of 
binary data. 

 Can’t be changed once burned in. 



  

 

 

 Conceptually, consist of a decoder and a memory array. 

Circuit diagram of ROM 

Advantages: 

 Design become extremely easy. 

 It is possible to change or modify the design quickly. 

 Reduced cost. 

 Modification takes less time than SSI/MSI circuits. 

Disadvantages: 

 Increase in power requirement. 

 Complete circuit is not utilizes 



  

 

 

 Increase in size with increase in number of input variables. 

 

EXAMPLE 1: Tabulate the truth for an 8 X 4 ROM / PROM that implements the following four 

Boolean functions: 

A(X,Y,Z) = ∑m(1,3,4,6) 

B(X,Y,Z) = ∑m(2,4,5,7) 

C(X,Y,Z) = ∑m(0,1,5,7) 

D(X,Y,Z) = ∑m(1,2,3,4) 

ANS: 

Here, total 

 

INPUT OUTPUT 

A B C D 

X’Y’Z’(000) 0 01 0 

X’Y’Z (001) 1 01 1 

X’YZ’ (010) 0 10 1 

X’YZ (011) 1 00 1 

XY’Z’ (100) 1 10 1 

XY’Z (101) 0 11 0 

XYZ’ (110) 1 00 0 

XYZ (111) 0 11 0 
 

 



  

 

 

Here,  * = Programmed Connection 

● = Fixed Connection 

EXAMPLE 2: What are functions F3, F2, F1 and F0 in terms of (A2, A1, A0) ? 

ANS: 

 F3 = D7 + D5 + D2 = A2A0 + A2’A1A0’ 
 F2 = D7 + D0 = A2A1A0 + A2’A1’A0’ 
 F1 = D4 + D1 = A2 A1’A0’ + A2’A1’A0 
 F0 = D7 + D5 + D1 = A2A0 + A1’A0 

 

EXAMPLE 3: Tabulate the truth for an 8 X 4 ROM / PROM that implements the following four 

Boolean functions: 

A(X,Y,Z) = ∑m(3,6,7); 

B(X,Y,Z) = ∑m(0,1,4,5,6) 

C(X,Y,Z) = ∑m(2,3,4); 

D(X,Y,Z) = ∑m(2,3,4,7) 

ANS: 

ROM size is = 8 X 4 So, according 2n X m  

Inputs = n = 3, Output = m = 4, 

Size of Decoder = n X 2n = 3 X 8 

Inputs are ->  X,Y,Z  



  

 

 

Outputs are -> A,B,C,D 

 

Programmable Array Logic (PAL): 

 PAL is most commonly used type of PLD. It is a programmable array of logic gates. 

 The array of logic gates is on single chip and it is in the AND-OR configuration. 

 The special feature of PLA is that a programmable AND array and fixed OR array. 

 Also note that in each OR gate in the OR array gets input from some of the AND gates. That means 
output of all AND gates are not applied to any of the OR gates 

 

 Un-programmed and programmed PAL are shown in below figure. 



  

 

 

 

Un-programmed PAL 

Programmed PAL 

 In Un-programmed PAL all the links are connected with Fusible Link as shown in below figure. 

 As per required output function one needs to burn the fusible link and this kind of PAL is known as a 
programmed PAL. 

 Simplified representation of PAL is shown in below figure. 

 

Input Buffers: 

 Input buffer in a PAL is used for avoiding the loading of sources connected at the inputs. 

 The buffer produce inverted and non-inverted versions of their corresponding inputs. 



  

 

 

 One such buffer is used for each of the input lines as shown in above figure. 

AND Matrix: 

 AND matrix is shown as above figure. 

 The (X) mark indicate that a connection is present. Each AND gate has 2M input which are shown 
only by a single line (e.g. A,B,C, etc….). Where M is the No. of inputs. 

 When a logic function is to be implemented, we have to program the array. In programming the 
desired connections are left with the (X) marks and such mark is not used when connection is not 
required. 

OR Matrix: 

 OR matrix is shown as above figure. In PAL fixed OR array is used so there is no need to do 
programming to the OR array. 

 No. of OR arrays are equal to the required No. of functions at the output. 

Input and Output Circuit: 

 The input and output circuit of PAL are similar to those PLAs. 

 The No. of fusible link in PAL is equal to 2M x n. where M = No. of available inputs and n = 
Corresponds to No. of product terms. 

Advantages: 

 For given internal complexity, a PAL can have larger N and M. 

 Some PALs have outputs that can be complemented, adding POS functions. 

 No multilevel circuit implementations in ROM (without external connections from output to input). 
PAL has outputs from OR terms as internal inputs to all AND terms, making implementation of 
multi- level circuits easier. 

Disadvantages: 

 n x m ROM guaranteed to implement any m functions of n inputs. PAL may have too few inputs to 
the OR gates. 

 

Designing steps of Combinational Circuits using PAL 

 STEP 1: Prepare the Truth Table. 

 STEP 2: Write a Boolean expression in SOP form. 

 STEP 3: Reduce / Find the Boolean expressions using K-map or reducing Boolean 
expression method. 

 STEP 4: List of product terms for each of the function and decide total No. of AND & OR 
gates required. 

 STEP 5: Decide connections of AND and OR matrix & draw logic diagram. 

NOTE: Out of first three steps, all three steps may not require in all examples 



  

 

 

EXAMPLE 1: A combinational circuit is defined by given truth Table for that Implement the circuit 

using PAL 

 

ANS: 

 STEP 1: Prepare the Truth Table. 

This step is not required in this example because it is given. 

 STEP 2: Write a Boolean expression in SOP form. 

This step is not required in this example 

 STEP 3: Find the Boolean expressions using K-map or reducing Boolean expression method 

 STEP 4: List of product terms for each of the function and decide total No. of AND & OR gates 
required. 

W = A + BD + BC 

X = BC’ 

Y = B + C 

Z = A’B’C’D + BCD + AD’ + B’CD’ 

Total No. of AND gate = 16 (B’cz maximum No. of product terms are in function Z (4 product 

terms) and total No. of functions are 4 so 4 X 4 = 16). 

Total No. of OR gates = Total No. of required functions at the output side (W,X,Y,Z) = 4. 



  

 

 

 STEP 5: Decide connections of AND and OR matrix & draw logic diagram 



  

 

 

 

Programmable Logic Array (PLA): 

 A PLD generally consist of programmable array of logic gates. Interconnections are made 
with the array inputs. 

 PLA consist two levels of logic, an AND-plane and an OR-plane, where both levels are 
programmable. 

 The outputs are connected to the device pins through inverting or non-inverting buffers and 
flip flops. 

 The basic block diagram of a PLA is shown in below figure. 

 Here programmable AND matrix can be used to implement the product terms in the SOP form 
and the programmable OR array can be used for implementing the sum of the product terms. 

 Logic gates used can be two level AND-OR, NAND-NAND or NOR-NOR configuration. 
Sometimes AND-OR-EXOR configuration is also used. But generally AND-OR is most 
preferable configuration. 

 Simplified representation of PLA is shown in below figure. 



  

 

 

Simplified block diagram of PLA 

Simplified representation of PLA 

In PLA No. of outputs = No. of OR gates. 

And No. of Product terms = No. of AND gates 

Size of PLA is defines as M x  P x N 

Where M = No. of inputs, P = No. of product terms, N = No. of outputs 

 

Input Buffers: 

 Input buffer in PLA is used for avoiding the loading of sources connected at the inputs. 

 Buffer of two types namely, inverted buffers and non-inverted buffers as shown in below 
figure. 

 One such buffer is used in each of the M input lines. 

 



  

 

 

AND Matrix: 

AND matrix 

 The X indicates that a connection is present. Each AND gate has 2M inputs which are shown 
only by single line where, M is No. of inputs (e.g. A,B,C, etc….). 

 When a logic function is to be implemented, we have to program the array. In programming 
the desired connections are left with the (X) marks and such mark is not used when 
connection is not required. 

OR Matrix: 

OR Matrix: 

 Above figure shows simplified representation of the OR matrix. 

 It is possible to program the OR matrix, by open circuiting the unwanted fusible links. The 
open fusible links are equivalent to a ‘0’ at the input of corresponding OR gate. 

 

Applications of PLA: 

1. We can implement combinational circuit using PLA. For this only ouput buffers are used. 

2. We can also implement sequential circuit using PLA. For implement this flip flops and buffers are 

included in output stage. 

 

Designing steps of Combinational Circuits using PLA 

 STEP 1: Prepare the Truth Table. 



  

 

 

 STEP 2: Write a Boolean expression in SOP form. 

 STEP 3: Reduce / Find the Boolean expressions using K-map or reducing Boolean 
expression method. 

 STEP 4: List of unique product terms. 

 STEP 5: PLA table implementation. 

 STEP 6: Decide connections of AND and OR matix & draw logic diagram. 

NOTE: Out of first three steps, all three steps may not require in all examples 

 

EXAMPLE 1: Draw combinational circuit for a PLA with three inputs, three product terms and two 

outputs. 

ANS: 

Given,  No. of inputs = 3 = I0, I1, I2 

No. of Outputs = 2 = No. of OR gates.  

NO. of product terms = No. of AND gates 

 

 

Difference between ROM, PAL and PLA. 

 

ROM/PROM PAL PLA 

Consist of fixed AND gate 
array and programmable 
OR array. 

Consist of programmable AND
gate array and fixed 
OR array. 

Consist of programmable AND
 gate array and 
Programmable OR array. 

Medium speed High speed 

programmable 
arrays) 

(only one 
gates 

Slow (two programmable gates arrays) 



  

 

 

Cheap 
component) 

(High-volume Intermediate cost (less than 
PLA) 

Most expensive 
complex in design) 

(Most 

Not flexible Not flexible Offering maximum 
programming flexibility 

It is possible to decode any 
minterms 

We can get any desired 
minterms by programming the 

AND matrix 

We can get any desired minterms by
programming the AND & OR matrix 

SOP function in the 
standard form only can be 
implemented 

Any SOP function can be 
implemented 

Any SOP function can be implemented 

 

Traffic Light Controller  

A simple traffic light controller can be implemented by a state machine that has a state 

diagram such as the one shown in Figure 1. 

The circuit has control over a North-South road and an East-West road. The North-South 

lights are controlled by outputs called nsr, nsy, and nsg (North-South red, yellow, green). The East-

West road is controlled by similar outputs called ewr, ewy, ewg. The cycle is controlled by an input 

called TIMER which controls the length of the two greenlight cycles (s0 represents the EW green; 

s2 represents the NS green.) When TIMER = 1, a transition from s0 to s1 or from s2 to s3 is 

possible. This accompanies a change from green to yellow on the active road. The light on the 

other road stays red. An unconditional transition follows, changing the yellow light to red on one 

road and the red light to green on the other. 



  

 

 

 

Figure 1. State Diagram for a Traffic Light Controller 

The outputs in the state diagram of Figure 30.1 are indicated as active-LOW. For the Altera 

DE-1 board, you must use active- HIGH outputs instead.  

The cycle can be set to any length by changing the signal on the TIMER input. (The yellow 

light will always be on for one clock pulse.) For ease of observation, we will use a cycle of ten clock 

pulses for any one road: 4 clocks GREEN, 1 clock YELLOW, 5 clocks RED. This can be generated by a 

mod-5 counter, as shown in Figure 2.  

The clock divider brings the on-board oscillator frequency down to the range of visible 

observation for our CPLD board. A 22-bit counter is suitable for the Altera DE-1. 

 Calculate the frequency of the state machine clock for your CPLD board. f = __________  

Creating a Traffic Light Controller in VHDL   

1. Create a VHDL file to implement the traffic controller state diagram shown in Figure 1, 

combined with the mod-5 cycle timer, but not the clock divider. The individual modules 

and the top-level of the hierarchy must all be done in VHDL.  

2. Create a simulation that shows the combined operation of the output controller and cycle 

timer.  



  

 

 

3. Add a clock divider to the VHDL file for the traffic controller, as shown on the logic 

diagram of Figure 30.2. Set the clock divider width to 22 Assign pins to the design so 

that the North-South lights correspond to LED1—LED3 on the CPLD board and the 

East-West lights correspond to LED9—LED11.  

4. Assign a pin to the state machine clock (so that it can be observed directly) and make it 

correspond to LED16. Disable all other LEDs. Make sure that the controller outputs are 

at the correct active level for the LEDs on your CPLD board.  

5. Download the file to the CPLD board.  

Traffic Controller with Walk Signal  

1. Modify the VHDL files of the previous section to implement a traffic light controller with a 

walk signal, as shown in the logic diagram of Figure 3. The walk signal goes on for one 

green cycle of the direction related to the switch. For example, when you press the NS 

switch, the North-South walk signal goes on for the next North-South green cycle. On the 

next NS green cycle, the walk signal is off unless the NS switch has been pressed again. The 

switches can be pressed at any time, as their states are stored in a pair of flipflops. The status 

of the flip-flop determines the transition to a state for which the walk signal is (or is not) 

active. The flip-flop is asynchronously reset by the state machine at the end of its active 

cycle.  

 

Figure.2 Logic Diagram for a Traffic Light Controller 

The state diagram of Figure.1 forms the core of the new state diagram. The machine operates as 

follows:  



  

 

 

• The machine resets to North-South red and East-West green (s0) and remains in 

this state until the TIMER input goes HIGH. Both walk signals are off.  

• The machine transitions to s1 when TIMER = 1. East-West goes yellow.  

• If the machine is in s1 and the North-South walk switch has not been pressed, the 

machine goes to s2. North-South is green for four clocks, until Timer = 1. 

EastWest is red and both walk signals are off. The machine goes to s3 when 

TIMER = 1. Outputs are NS yellow and EW red. Walk signals are off.  

• If the machine is in s1 and the North-South walk switch has been pressed, the 

machine goes to a new state, s4, which behaves exactly the same as s2, except 

that the NS walk signal is now on. As long as TIMER = 0, the machine remains 

in s4, with North-South light green and East-West light red. When TIMER = 1, 

s4 makes a transition to s3. In this transition, the walk signal turns off and the 

latch reset output (NS_WALK_RESET) goes LOW for one clock pulse. Outputs 

are NS yellow and EW red. 

• If the machine is in s3 and the EW walk switch has not been pressed, the machine 

makes a transition to s0. Outputs are NS red and EW green. Walk signals are off.  

• If the machine is in s3 and the EW walk switch has been pressed, this is stored as 

the HIGH state of a latch output. This is sensed at input EW_WALK_SW on the 

state machine and there is a transition to s5. This behaves the same as s0, except 

that the EW walk signal is on. As long as TIMER = 0, the machine stays in s5, 

with outputs North-South red and East-West green. When TIMER = 1, the 

machine makes a transition to s1. The walk signal turns off and a LOW pulse on 

EW_WALK_RESET resets the EW latch. The outputs are now NS red and EW 

yellow.  

2. Draw the modified state diagram for the controller, as previously described, in the space 

provided on this page.  

3. Implement the modified design entirely in VHDL. For the D flip-flops, use the DFF 

component in Quartus II primitives library. In order to use the DFF primitives, the file 

requires the following two lines at the beginning: LIBRARY altera; USE 

altera.maxplus2.ALL; A VHDL component declaration for the latch can be found in the 

Quartus II Help menu under Primitives. 

4. Assign additional pins for the walk signals: NS walk on LED4 and EW walk on LED12.  

Compile and download the file to the CPLD test board.  



  

 

 

 

Figure.3 Logic Diagram for a Traffic Light Controller with a Walk Signal  

 

NS_SW,EW_SW,TIMER/NSR,NSY,NSG,EWR,EWY,EWG,NS_WALK,EW_WALK,NS_RESET,EW_RESET 

Figure 4. State Diagram for Walk Signal 



  

 

 

 
 
 



 

 

 

 

Introduction to High-Capacity FPDs 

Prompted by the development of new types of sophisticated field-programmable devices (FPDs), 

the process of designing digital hardware has changed dramatically over the past few years. 

Unlike previous generations of technology, in which board-level designs included large numbers 

of SSI chips containing basic gates, virtually every digital design produced today consists mostly 

of high-density devices. This applies not only to custom devices like processors and memory, but 

also for logic circuits such as state machine controllers, counters, registers, and decoders. When 

such circuits are destined for high-volume systems they have been integrated into high-density 

gate arrays. However, gate array NRE costs often are too expensive and gate arrays take too long 

to manufacture to be viable for prototyping or other low-volume scenarios. For these reasons, 

most prototypes, and also many production designs are now built using FPDs. The most compel- 

ling advantages of FPDs are instant manufacturing turnaround, low start-up costs, low financial 

risk and (since programming is done by the end user) ease of design changes. 

The market for FPDs has grown dramatically over the past decade to the point where there is 

now a wide assortment of devices to choose from. A designer today faces a daunting task to 

research the different types of chips, understand what they can best be used for, choose a 

particular manufacturers’ product, learn the intricacies of vendor-specific software and then 

design the hardware. Confusion for designers is exacerbated by not only the sheer number of 

FPDs avail- able, but also by the complexity of the more sophisticated devices. The purpose of 

this paper is to provide an overview of the architecture of the various types of FPDs. The 

emphasis is on devices with relatively high logic capacity; all of the most important commercial 

products are discussed. 

Before proceeding, we provide definitions of the terminology in this field. This is necessary 

because the technical jargon has become somewhat inconsistent over the past few years as 

companies have attempted to compare and contrast their products in literature. 



 

 

 

 

Definit ions  of Relevant  Terminology  
 

The most important terminology used in this paper is defined below. 

 
• Field-Programmable Device (FPD) — a general term that refers to any type of integrated 

circuit used for implementing digital hardware, where the chip can be configured by the end 

user to realize different designs. Programming of such a device often involves placing the chip 

into a special programming unit, but some chips can also be configured “in-system”. Another 

name for FPDs is programmable logic devices (PLDs); although PLDs encompass the same 

types of chips as FPDs, we prefer the term FPD because historically the word PLD has referred 

to rela- tively simple types of devices. 

• PLA — a Programmable Logic Array (PLA) is a relatively small FPD that contains two levels 

of logic, an AND-plane and an OR-plane, where both levels are programmable (note: although 

PLA structures are sometimes embedded into full-custom chips, we refer here only to those 

PLAs that are provided as separate integrated circuits and are user-programmable). 

• PAL* — a Programmable Array Logic (PAL) is a relatively small FPD that has a programma- 

ble AND-plane followed by a fixed OR-plane 

• SPLD — refers to any type of Simple PLD, usually either a PLA or PAL 
 

• CPLD — a more Complex PLD that consists of an arrangement of multiple SPLD-like blocks 

on a single chip. Alternative names (that will not be used in this paper) sometimes adopted for 

this style of chip are Enhanced PLD (EPLD), Super PAL, Mega PAL, and others. 

• FPGA — a Field-Programmable Gate Array is an FPD featuring a general structure that allows 

very high logic capacity. Whereas CPLDs feature logic resources with a wide number of inputs 

(AND planes), FPGAs offer more narrow logic resources. FPGAs also offer a higher ratio of 

flip-flops to logic resources than do CPLDs. 

• HCPLDs — high-capacity PLDs: a single acronym that refers to both CPLDs and FPGAs. This 

term has been coined in trade literature for providing an easy way to refer to both types of 

devices. We do not use this term in the paper. 

• Interconnect — the wiring resources in an FPD. 
 

• Programmable Switch — a user-programmable switch that can connect a logic element to an 

interconnect wire, or one interconnect wire to another 

• Logic Block — a relatively small circuit block that is replicated in an array in an FPD. When a 



 

 

 

circuit is implemented in an FPD, it is first decomposed into smaller sub-circuits that can each 

be mapped into a logic block. The term logic block is mostly used in the context of FPGAs, but 

it could also refer to a block of circuitry in a CPLD. 

• Logic Capacity — the amount of digital logic that can be mapped into a single FPD. This is 

usually measured in units of “equivalent number of gates in a traditional gate array”. In other 

words, the capacity of an FPD is measured by the size of gate array that it is comparable to. In 

simpler terms, logic capacity can be thought of as “number of 2-input NAND gates”. 

• Logic Density — the amount of logic per unit area in an FPD. 
 

• Speed-Performance — measures the maximum operable speed of a circuit when implemented 

in an FPD. For combinational circuits, it is set by the longest delay through any path, and for 

sequential circuits it is the maximum clock frequency for which the circuit functions properly. 

 

In the remainder of this section, to provide insight into FPD development the evolution of 

FPDs over the past two decades is described. Additional background information is also included 

on the semiconductor technologies used in the manufacture of FPDs. 

 

Evolution of Programmable Logic Devices  
 

The first type of user-programmable chip that could implement logic circuits was the 

Programmable Read-Only Memory (PROM), in which address lines can be used as logic circuit 

inputs and data lines as outputs. Logic functions, however, rarely require more than a few product 

terms, and a PROM contains a full decoder for its address inputs. PROMS are thus an inefficient 

architecture for realizing logic circuits, and so are rarely used in practice for that purpose. The 

first device developed later specifically for implementing logic circuits was the Field-

Programmable Logic Array (FPLA), or simply PLA for short. A PLA consists of two levels of 

logic gates: a programmable “wired” AND-plane followed by a programmable “wired” OR-

plane. A PLA is structured so that any of its inputs (or their complements) can be AND’ed 

together in the AND-plane; each AND-plane output can thus correspond to any product term of 

the inputs. Similarly, each OR- plane output can be configured to produce the logical sum of any 

of the AND-plane outputs. With this structure, PLAs are well-suited for implementing logic 

functions in sum-of-products form. They are also quite versatile, since both the AND terms and 

OR terms can have many inputs (this feature is often referred to as wide AND and OR gates). 



 

 

 

 
 

Figure 1 - Structure of a PAL. 

 

 

When PLAs were introduced in the early 1970s, by Philips, their main drawbacks were that 

they were expensive to manufacture and offered somewhat poor speed-performance. Both disad- 

vantages were due to the two levels of configurable logic, because programmable logic planes 

were difficult to manufacture and introduced significant propagation delays. To overcome these 

weaknesses, Programmable Array Logic (PAL) devices were developed. As Figure 1 illustrates, 

PALs feature only a single level of programmability, consisting of a programmable “wired” AND- 

plane that feeds fixed OR-gates. To compensate for lack of generality incurred because the OR-

plane is fixed, several variants of PALs are produced, with different numbers of inputs and out- 

puts, and various sizes of OR-gates. PALs usually contain flip-flops connected to the OR-gate out- 

puts so that sequential circuits can be realized. PAL devices are important because when 

introduced they had a profound effect on digital hardware design, and also they are the basis for 

some of the newer, more sophisticated architectures that will be described shortly. Variants of the 

basic PAL architecture are featured in several other products known by different acronyms. All 

small PLDs, including PLAs, PALs, and PAL-like devices are grouped into a single category 

called Simple PLDs (SPLDs), whose most important characteristics are low cost and very high 

pin-to-pin speed-performance. 



 

 

 

As technology has advanced, it has become possible to produce devices with higher capacity 

than SPLDs. The difficulty with increasing capacity of a strict SPLD architecture is that the 

structure of the programmable logic-planes grow too quickly in size as the number of inputs is 

increased. The only feasible way to provide large capacity devices based on SPLD architectures is 

then to integrate multiple SPLDs onto a single chip and provide interconnect to programmably 

connect the SPLD blocks together. Many commercial FPD products exist on the market today 

with this basic structure, and are collectively referred to as Complex PLDs (CPLDs). 

CPLDs were pioneered by Altera, first in their family of chips called Classic EPLDs, and then 

in three additional series, called MAX 5000, MAX 7000 and MAX 9000. Because of a rapidly 

growing market for large FPDs, other manufacturers developed devices in the CPLD category and 

there are now many choices available. All of the most important commercial products will be 

described in Section 2. CPLDs provide logic capacity up to the equivalent of about 50 typical 

SPLD devices, but it is somewhat difficult to extend these architectures to higher densities. To 

build FPDs with very high logic capacity, a different approach is needed.  

The highest capacity general purpose logic chips available today are the traditional gate arrays 

sometimes referred to as Mask-Programmable Gate Arrays (MPGAs). MPGAs consist of an array 

of pre-fabricated transistors that can be customized into the user’s logic circuit by connecting the 

transistors with custom wires. Customization is performed during chip fabrication by specifying 

the metal interconnect, and this means that in order for a user to employ an MPGA a large setup 

cost is involved and manufacturing time is long. Although MPGAs are clearly not FPDs, they are 

mentioned here because they motivated the design of the user-programmable equivalent: Field- 

Programmable Gate Arrays (FPGAs). Like MPGAs, FPGAs comprise an array of uncommitted 

circuit elements, called logic blocks, and interconnect resources, but FPGA configuration is per- 

formed through programming by the end user. An illustration of a typical FPGA architecture 

appears in Figure 2. As the only type of FPD that supports very high logic capacity, FPGAs have 

been responsible for a major shift in the way digital circuits are designed. 

 



 

 

 

 

Figure 2 - Structure of an FPGA. 

 

Figure 3 summarizes the categories of FPDs by listing the logic capacities available in each of 

the three categories. In the figure, “equivalent gates” refers loosely to “number of 2-input NAND 

gates”. The chart serves as a guide for selecting a specific device for a given application, 

depending on the logic capacity needed. However, as we will discuss shortly, each type of FPD is 

inherently better suited for some applications than for others. It should also be mentioned that 

there exist other special-purpose devices optimized for specific applications (e.g. state machines, 

ana- log gate arrays, large interconnection problems). However, since use of such devices is 

limited they will not be described here. The next sub-section discusses the methods used to 

implement the user-programmable switches that are the key to the user-customization of FPDs. 

 

User-Programmable Switch Technologies 
 

The first type of user-programmable switch developed was the fuse used in PLAs. 

Although fuses are still used in some smaller devices, we will not discuss them here because they 

are quickly being replaced by newer technology. For higher density devices, where CMOS 



 

 

 

dominates the IC industry, different approaches to implementing programmable switches have 

been developed. For CPLDs the main switch technologies (in commercial products) are floating 

gate transistors like those used in EPROM and EEPROM, and for FPGAs they are SRAM and 

antifuse. Each of these is briefly discussed below. 

 

 
 

Figure 3 - FPD Categories by Logic Capacity. 

 

An EEPROM or EPROM transistor is used as a programmable switch for CPLDs (and also 

for many SPLDs) by placing the transistor between two wires in a way that facilitates implemen- 

tation of wired-AND functions. This is illustrated in Figure 4, which shows EPROM transistors as 

they might be connected in an AND-plane of a CPLD. An input to the AND-plane can drive a 

product wire to logic level ‘0’ through an EPROM transistor, if that input is part of the corre- 

sponding product term. For inputs that are not involved for a product term, the appropriate 

EPROM transistors are programmed to be permanently turned off. A diagram for an EEPROM- 

based device would look similar. 

 
Although there is no technical reason why EPROM or EEPROM could not be applied to 

FPGAs, current commercial FPGA products are based either on SRAM or antifuse technologies, 

as discussed below. 



 

 

 

 
An example of usage of SRAM-controlled switches is illustrated in Figure 5, showing two 

applications of SRAM cells: for controlling the gate nodes of pass-transistor switches and to 

control the select lines of multiplexers that drive logic block inputs. The figures gives an 

example of the connection of one logic block (represented by the AND-gate in the upper left 

corner) to another through two pass-transistor switches, and then a multiplexer, all controlled by 

SRAM cells. Whether an FPGA uses pass-transistors or multiplexers or both depends on the 

particular product. 

 

Figure 4 - EPROM Programmable Switches. 

 

The other type of programmable switch used in FPGAs is the antifuse. Antifuses are origi- nally 

open-circuits and take on low resistance only when programmed. Antifuses are suitable for 

FPGAs because they can be built using modified CMOS technology. As an example, Actel’s anti- 

fuse structure, known as PLICE [Ham88], is depicted in Figure 6. The figure shows that an anti- 

fuse is positioned between two interconnect wires and physically consists of three sandwiched 

layers: the top and bottom layers are conductors, and the middle layer is an insulator. When 

unprogrammed, the insulator isolates the top and bottom layers, but when programmed the insula- 

tor changes to become a low-resistance link. PLICE uses Poly-Si and n+ diffusion as conductors 

and ONO (see [Ham88]) as an insulator, but other antifuses rely on metal for conductors, with 



 

 

 

amorphous silicon as the middle layer [Birk92][Marp94]. 



 

 

 

 
 

Figure 5 - SRAM-controlled Programmable Switches. 

 

Figure 6 - Actel Antifuse Structure. 

Table 1 lists the most important characteristics of the programming technologies discussed in 

this section. The left-most column of the table indicates whether the programmable switches are 

one-time programmable (OTP), or can be re-programmed (RP). The next column lists whether the 

switches are volatile, and the last column names the underlying transistor technology. 

 



 

 

 

Name Re-programmable Volatile Technology 

Fuse no no Bipolar 

EPROM yes 

out of circuit 

no UVCMOS 

EEPROM yes 

in circuit 

no EECMOS 

SRAM yes 

in circuit 

yes CMOS 

Antifuse no no CMOS+ 

 

Table 1 - Summary of Programming Technologies. 

 

Computer Aided Design (CAD) Flow for FPDs 
 

When designing circuits for implementation in FPDs, it is essential to employ Computer-Aided 

Design (CAD) programs. Such software tools are discussed briefly in this section to provide a feel 

for the design process involved. 

 
CAD tools are important not only for complex devices like CPLDs and FPGAs, but also for 

SPLDs. A typical CAD system for SPLDs would include software for the following tasks: initial 

design entry, logic optimization, device fitting, simulation, and configuration. This design flow is 

illustrated in Figure 7, which also indicates how some stages feedback to others. Design entry 

may be done either by creating a schematic diagram with a graphical CAD tool, by using a text- 

based system to describe a design in a simple hardware description language, or with a mixture of 

design entry methods. Since initial logic entry is not usually in an optimized form, algorithms are 

employed to optimize the circuits, after which additional algorithms analyse the resulting logic 

equations and “fit” them into the SPLD. Simulation is used to verify correct operation, and the 

user would return to the design entry step to fix errors. When a design simulates correctly it can be 

loaded into a programming unit and used to configure an SPLD. One final detail to note about Fig- 

ure 7 is that while the original design entry step is performed manually by the designer, all other 

steps are carried out automatically by most CAD systems. 

 



 

 

 

 

Figure 7 - CAD Design Flow for SPLDs. 

The steps involved for implementing circuits in CPLDs are similar to those for SPLDs, but the 

tools themselves are more sophisticated. Because the devices are complex and can accommodate 

large designs, it is more common to use a mixture of design entry methods for different modules 

of a complete circuit. For instance, some modules might be designed with a small hardware 

description language like ABEL, others drawn using a symbolic schematic capture tool, and still 

others described via a full-featured hardware description language such as VHDL. Also, for 

CPLDs the process of “fitting” a design may require steps similar to those described below for 

FPGAs, depending on how sophisticated the CPLD is. The necessary software for these tasks is 

supplied either by the CPLD manufacturer or a third party. 

 
The design process for FPGAs is similar to that for CPLDs, but additional tools are needed to 

support the increased complexity of the chips. The major difference is in the “device fitter” step 

that comes after logic optimization and before simulation, where FPGAs require at least three 

steps: a technology mapper to map from basic logic gates into the FPGA’s logic blocks, placement 

to choose which specific logic blocks to use in the FPGA, and a router to allocate the wire 

segments in the FPGA to interconnect the logic blocks. With this added complexity, the CAD 

tools might require a fairly long period of time (often more than an hour or even several hours) to 

complete their tasks. 

Overview of Commercially Available FPDs 



 

 

 

This section provides many examples of commercial FPD products. SPLDs are first discussed 

briefly, and then details are given for all of the most important CPLDs and FPGAs. The reader 

who is interested in more details on the commercial products is encouraged to contact the 

manufacturers, or their distributors, for the latest data sheets*. 

Commercially Available SPLDs 

 
As the staple for digital hardware designers for the past two decades, SPLDs are very important 

devices. SPLDs represent the highest speed-performance FPDs available, and are inexpensive. 

However, they are also fairly straight-forward and well understood, so this paper will discuss 

them only briefly. 

Two of the most popular SPLDs are the PALs produced by Advanced Micro Devices (AMD) 

known as the 16R8 and 22V10. Both of these devices are industry standards and are widely sec- 

ond-sourced by various companies. The name “16R8” means that the PAL has a maximum of 16 

inputs (there are 8 dedicated inputs and 8 input/outputs), and a maximum of 8 outputs. The “R” 

refers to the type of outputs provided by the PAL and means that each output is “registered” by a 

D flip-flop. Similarly, the “22V10” has a maximum of 22 inputs and 10 outputs. Here, the “V” 

means each output is “versatile” and can be configured in various ways, some configurations 

registered and some not. 

Another widely used and second sourced SPLD is the Altera Classic EP610. This device is 

similar in complexity to PALs, but it offers more flexibility in the way that outputs are produced 

and has larger AND- and OR- planes. In the EP610, outputs can be registered and the flip-flops 

are configurable as any of D, T, JK, or SR. 

In addition to the SPLDs mentioned above many other products are available from a wide 

array of companies. All SPLDs share common characteristics, like some sort of logic planes 

(AND, OR, NOR, or NAND), but each specific product offers unique features that may be partic- 

ularly attractive for some applications. A partial list of companies that offer SPLDs includes: 

AMD, Altera, ICT, Lattice, Cypress, and Philips-Signetics. Since some of these SPLDs have com- 

plexity approaching that found in CPLDs, the paper will now move on to more sophisticated 

devices. 



 

 

 

 
 
 
 
 

LAB 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Altera MAX 7000 Series. 

 

Commercially Available CPLDs 

 

As stated earlier, CPLDs consist of multiple SPLD-like blocks on a single chip. However, CPLD 

products are much more sophisticated than SPLDs, even at the level of their basic SPLD-like 

blocks. In this section, CPLDs are discussed in detail, first by surveying the available commercial 

products and then by discussing the types of applications for which CPLDs are best suited. Suffi- 

cient details are presented to allow a comparison between the various competing products, with 

more attention being paid to devices that we believe are in more widespread use than others. 

 

Altera CPLDs 
 

Altera has developed three families of chips that fit within the CPLD category: MAX 5000, 

MAX 7000, and MAX 9000. Here, the discussion will focus on the MAX 7000 series, because it 

is widely used and offers state-of-the-art logic capacity and speed-performance. MAX 5000 rep- 

resents an older technology that offers a cost effective solution, and MAX 9000 is similar to MAX 

7000, except that MAX 9000 offers higher logic capacity (the industry’s highest for CPLDs). 

 
The general architecture of the Altera MAX 7000 series is depicted in Figure 8. It comprises 

an array of blocks called Logic Array Blocks (LABs), and interconnect wires called a 

Programmable Interconnect Array (PIA). The PIA is capable of connecting any LAB input or 

I/O 

Block 

PIA 



 

 

 

output to any other LAB. Also, the inputs and outputs of the chip connect directly to the PIA and 

to LABs. A LAB can be thought of as a complex SPLD-like structure, and so the entire chip can 

be consid- ered to be an array of SPLDs. MAX 7000 devices are available both based in EPROM 

and EEPROM technology. Until recently, even with EEPROM, MAX 7000 chips could be 

program- mable only “out-of-circuit” in a special-purpose programming unit; however, in 1996 

Altera released the 7000S series, which is reprogrammable “in-circuit”. 

 
The structure of a LAB is shown in Figure 9. Each LAB consists of two sets of eight macro- 

cells (shown in Figure 10), where a macrocell comprises a set of programmable product terms 

(part of an AND-plane) that feeds an OR-gate and a flip-flop. The flip-flops can be configured as 

D type, JK, T, SR, or can be transparent. As illustrated in Figure 10, the number of inputs to the 

 

 

Figure 9 - Altera MAX 7000 Logic Array Block (LAB). 



 

 

 

 

OR-gate in a macrocell is variable; the OR-gate can be fed from any or all of the five product 

terms within the macrocell, and in addition can have up to 15 extra product terms from macrocells 

in the same LAB. This product term flexibility makes the MAX 7000 series LAB more efficient in 

terms of chip area because typical logic functions do not need more than five product terms, and 

the architecture supports wider functions when they are needed. It is interesting to note that vari- 

able sized OR-gates of this sort are not available in basic SPLDs (see Figure 1). Similar features 

of this kind are found in other CPLD architectures discussed shortly. 

 
Besides Altera, several other companies produce devices that can be categorized as CPLDs. 

For example, AMD manufacturers the Mach family, Lattice has the (i)pLSI series, Xilinx pro- 

duces a CPLD series that they call XC7000 (unrelated to the Altera MAX 7000 series) and has 

announced a new family called XC9500, and ICT has the PEEL array. These devices are dis- 

cussed in the following sub-sections. 

 

 
Figure 10 - MAX 7000 Macrocell. 



 

 

 

 

 

Figure 11 - Structure of AMD Mach 4 CPLDs. 

 

Advanced Micro Devices (AMD) CPLDs 

 
AMD offers a CPLD family with five sub-families called Mach 1 to Mach 5. Each Mach device 

comprises multiple PAL-like blocks: Mach 1 and 2 consist of optimized 22V16 PALs, and Mach 3 

and 4 comprise several optimized 34V16 PALs, and Mach 5 is similar but offers enhanced speed- 

performance. All Mach chips are based on EEPROM technology, and together the five sub-fami- 

lies provide a wide range of selection, from small, inexpensive chips to larger state-of-the-art 

ones. This discussion will focus on Mach 4, because it represents the most advanced currently 

available parts in the Mach family. 

 
Figure 11 depicts a Mach 4 chip, showing the multiple 34V16 PAL-like blocks, and the 

interconnect, called Central Switch Matrix, for connecting the blocks together. Chips range in 

size from 6 to 16 PAL blocks, which corresponds roughly to 2000 to 5000 equivalent gates and 

are in- circuit programmable. All connections in Mach 4 between one PAL block and another 

(even from a PAL block to itself) are routed through the Central Switch Matrix. The device 

can thus be viewed not only as a collection of PALs, but also as a single large device. Since all 

connections travel through the same path, timing delays of circuits implemented in Mach 4 are 



 

 

 

predictable. 

 
A Mach 4 PAL-like block is depicted in Figure 12. It has 16 outputs and a total of 34 inputs 

(16 of which are the outputs fed-back), so it corresponds to a 34V16 PAL. However, there are two 

key differences between this block and a normal PAL: 1. there is a product term allocator 

between the AND-plane and the macrocells (the macrocells comprise an OR-gate, an EX-OR gate 

and a flip-flop), and 2. there is an output switch matrix between the OR-gates and the I/O pins. 

These two features make a Mach 4 chip easier to use, because they “decouple” sections of the 

PAL block. More specifically, the product term allocator distributes and shares product terms 

from the AND-plane to whichever OR-gates require them. This is much more flexible than the 

fixed-size OR-gates in regular PALs. The output switch matrix makes it possible for any macro- 

cell output (OR-gate or flip-flop) to drive any of the I/O pins connected to the PAL block. Again, 

flexibility is enhanced over a PAL, where each macrocell can drive only one specific I/O pin. 

Mach 4’s combination of in-system programmability and high flexibility promote easy hardware 

design changes. 

 
 

 

 

Figure 12 - AMD Mach 4 PAL-like (34V16) BLock. 



 

 

 

 

Lattice CPLDs 
 

Lattice offers a complete range of CPLDs, with two main product lines: the Lattice pLSI consist 

of three families of EEPROM CPLDs, and the ispLSI are the same as the pLSI devices, except 

that they are in-system programmable. For both the pLSI and ispLSI products, Lattice offers three 

families that have different logic capacities and speed-performance. 

 
Lattice’s earliest generation of CPLDs is the pLSI and ispLSI 1000 series. Each chip consists 

of a collection of SPLD-like blocks, described in more detail later, and a global routing pool to 

connect blocks together. Logic capacity ranges from about 1200 to 4000 gates. Pin-to-pin delays 

are 10 nsec. Lattice also offers a CPLD family called the 2000 series, which are relatively small 

CPLDs, with between 600 and 2000 gates that offer a higher ratio of macrocells to I/O pins and 

higher speed-performance than the 1000 series. At 5.5 nsec pin-to-pin delays, the 2000 series 

offers state-of-the-art speed. 

 
Lattice’s 3000 series represents their largest CPLDs, with up to 5000 gates. Pin-to-pin delays 

for this device are about 10-15 nsec. In terms of other chips discussed so far, the 3000 series 

functionality is most similar to AMD’s Mach 4. The 3000 series offers some enhancements over 

the other Lattice parts to support more recent design styles, such as JTAG boundary scan. 

 
The general structure of a Lattice pLSI or ispLSI device is indicated in Figure 13. Around the 

outside edges of the chip are the bi-directional I/Os, which are connected both to the Generic 

Logic Blocks (GLBs) and the Global Routing Pool (GRP). As the fly-out on the right side of the 

figure shows, the GLBs are small PAL-like blocks that consist of an AND-plane, product term 

allocator, and macrocells. The GRP is a set of wires that span the entire chip and are available to 

connect the GLB inputs and outputs together. All interconnections pass through the GRP, so tim- 

ing between levels of logic in the Lattice chips is fully predictable, much as it is for the AMD 

Mach devices. 



 

 

 

 

Cypress FLASH370 CPLDs 
 

Cypress has recently developed a family of CPLD products that are similar to both the AMD 

and Lattice devices in several ways. The Cypress CPLDs, called FLASH370 are based on FLASH 

EEPROM technology, and offer speed-performance of 8.5 to 15 nsec pin-to-pin delays. The 

FLASH370 parts are not in-system programmable. Recognizing that larger chips need more I/Os, 

FLASH370 provides more I/Os than competing products, featuring a linear relationship between 

the number of macrocells and number of bi-directional I/O pins. The smallest parts have 32 

macrocells and 32 I/Os and the largest 256 macrocells and 256 I/Os. 

 
Figure14 shows that FLASH370 has a typical CPLD architecture with multiple PAL-like 

blocks and a programmable interconnect matrix (PIM) to connect them. Within each PAL-like 

block, there is an AND-plane that feeds a product term allocator that directs from 0 to 16 product 

terms to each of 32 OR-gates. Note that in the feed-back path from the macrocell outputs to the 

 

 

Figure 13 - Lattice (i)PLSI Architecture. 



 

 

 

 
 

Figure 14 - Architecture of Cypress FLASH370 CPLDs. 

 

PIM, there are 32 wires; this means that a macrocell can be buried (not drive an I/O pin) and yet 

the I/O pin that could be driven by the macrocell can still be used as an input. This illustrates 

another type of flexibility available in PAL-like blocks in CPLDs, but not present in normal PALs. 

 

Xilinx XC7000 CPLDs 
 

Although Xilinx is mostly a manufacturer of FPGAs, they also offer a selection of CPLDs, called 

XC7000, and have announced a new CPLD family called XC9500. There are two main families 

in the XC7000 offering: the 7200 series, originally marketed by Plus Logic as the Hiper EPLDs, 

and the 7300 series, developed by Xilinx. The 7200 series are moderately small devices, with 

about 600 to 1500 gates capacity, and they offer speed-performance of about 25 nsec pin-to-pin 

delays. Each chip consists of a collection of SPLD-like blocks that each have 9 macrocells. The 

macrocells in the 7200 series are different from those in other CPLDs in that each macrocell 

includes two OR-gates and each of these OR-gates is input to a two-bit Arithmetic Logic Unit 

(ALU). The ALU can produce any functions of its two inputs, and its output feeds a configurable 

flip-flop. The Xilinx 7300 series is an enhanced version of the 7200, offering more capacity (up to 

3000 gates when the entire family becomes available) and higher speed-performance. Finally, the 

new XC9500, when available, will offer in-circuit programmability with 5 nsec pin-to-pin delays 

and up to 6200 logic gates. 

PIM 



 

 

 

 

Altera FLASHlogic CPLDs 
 

Altera’s FLASHlogic, previously known as Intel’s FLEXlogic, features in-system programmabil 

ity and provides on-chip SRAM blocks, a unique feature among CPLD products. The upper part 

of Figure 15 illustrates the architecture of FLASHlogic devices; it comprises a collection of PAL- 

like blocks, called Configurable Function Blocks (CFBs), that each represents an optimized 

24V10 PAL. 

 

Figure 15 - Altera FLASHlogic CPLD. 

In terms of basic structure, FLASHlogic is similar to other products already discussed. How- 

ever, they have one unique feature that stands them apart from all other CPLDs: each PAL-like 

block, instead of being used for AND-OR logic, can be configured as a block of 10 nsec Static 

RAM. This concept is illustrated in the lower part of Figure 15, which shows one CFB being used 

as a PAL and another configured as an SRAM. In the SRAM configuration, the PAL block 

becomes a 128 word by 10 bit read/write memory. Inputs that would normally feed the AND- 

plane in the PAL in this case become address lines, data in, and control signals for the memory. 

Notice that the flip-flops and tri-state buffers are still available when the PAL block is configured 

as memory. 



 

 

 

In the FLASHlogic device, the AND-OR logic plane’s configuration bits are SRAM cells that 

are “shadowed” by EPROM or EEPROM cells. The SRAM cells are loaded with a copy of the 

non-volatile EPROM or EEPROM memory when power is applied, but it is the SRAM cells that 

control the configuration of the chip. It is possible to re-configure the chips in-system by down- 

loading new information into the SRAM cells. The SRAM cells’ contents can be written back to 

the EEPROM, so that non-volatile re-programming (in-circuit) is available. 

 

ICT PEEL Arrays 
 

The ICT PEEL Arrays are basically large PLAs that include logic macrocells with flop-flops 

and feedback to the logic planes. This structure is illustrated by Figure 16, which shows a 

programmable AND-plane that feeds a programmable OR-plane. The outputs of the OR-plane 

are divided into groups of four, and each group can be input to any of the logic cells. The logic 

cells provide registers for the sum terms and can feed-back the sum terms to the AND-plane. 

Also, the logic cells connect sum terms to I/O pins. 

 
Because they have a PLA-like structure, logic capacity of PEEL Arrays is somewhat difficult 

to measure compared to the CPLDs discussed so far; an estimate is 1600 to 2800 equivalent gates. 

 

 
 

Figure 16 - Architecture of ICT PEEL Arrays. 

PEEL Arrays offer relatively few I/O pins, with the largest part being offered in a 40 pin package. 

Since they do not comprise SPLD-like blocks, PEEL Arrays do not fit well into the CPLD cate- 

gory, however they are included here because they represent an example of PLA-based, rather 

than PAL-based devices, and they offer larger capacity than a typical SPLD. 



 

 

 

The logic cell in the PEEL Arrays, depicted in Figure 17, includes a flip-flop, configurable as D, 

T, or JK, and two multiplexers. The multiplexers each produce an output of the logic cell and can 

provide either a registered or combinational output. One of the logic cell outputs can connect to 

an I/O pin and the other output is buried. One of the interesting features of the logic cell is that 

the flip-flop clock, as well as preset and clear, are full sum-of-product logic functions. This differs 

from all other CPLDs, which simply provide product terms for these signals and is attractive for 

some applications. Because of their PLA-like OR-plane, the ICT PEEL Arrays are especially 

well-suited to applications that require very wide sum terms. 

 

 

Figure 17 - Structure of ICT PEEL Array Logic Cell. 

 

Applications of CPLDs 
 

We will now briefly examine the types of applications which best suit CPLD architectures. 

Because they offer high speeds and a range of capacities, CPLDs are useful for a very wide assort- 

ment of applications, from implementing random glue logic to prototyping small gate arrays. One 

of the most common uses in industry at this time, and a strong reason for the large growth of the 

CPLD market, is the conversion of designs that consist of multiple SPLDs into a smaller number 

of CPLDs. 

CPLDs can realize reasonably complex designs, such as graphics controller, LAN controllers, 

UARTs, cache control, and many others. As a general rule-of-thumb, circuits that can exploit wide 

AND/OR gates, and do not need a very large number of flip-flops are good candidates for 



 

 

 

implementation in CPLDs. A significant advantage of CPLDs is that they provide simple design 

changes through re-programming (all commercial CPLD products are re-programmable). With in- 

system programmable CPLDs it is even possible to re-configure hardware (an example might be 

to change a protocol for a communications circuit) without power-down. 

Designs often partition naturally into the SPLD-like blocks in a CPLD. The result is more 

predictable speed-performance than would be the case if a design were split into many small 

pieces and then those pieces were mapped into different areas of the chip. Predictability of circuit 

implementation is one of the strongest advantages of CPLD architectures. 

 

Commercially Available FPGAs 
 

As one of the largest growing segments of the semiconductor industry, the FPGA market-place is 

volatile. As such, the pool of companies involved changes rapidly and it is somewhat difficult to 

say which products will be the most significant when the industry reaches a stable state. For this 

reason, and to provide a more focused discussion, we will not mention all of the FPGA 

manufacturers that currently exist, but will instead focus on those companies whose products are 

in wide- spread use at this time. In describing each device we will list its capacity, nominally in 

2-input NAND gates as given by the vendor. Gate count is an especially contentious issue in the 

FPGA industry, and so the numbers given in this paper for all manufacturers should not be taken 

too seriously. Wags have taken to calling them “dog” gates, in reference to the traditional ratio 

between human and dog years. 

There are two basic categories of FPGAs on the market today: 1. SRAM-based FPGAs and 2. 

antifuse-based FPGAs. In the first category, Xilinx and Altera are the leading manufacturers in 

terms of number of users, with the major competitor being AT&T. For antifuse-based products, 

Actel, Quicklogic and Cypress, and Xilinx offer competing products. 

 

Xilinx SRAM-based FPGAs 
 

The basic structure of Xilinx FPGAs is array-based, meaning that each chip comprises a two- 

dimensional array of logic blocks that can be interconnected via horizontal and vertical routing 

channels. An illustration of this type of architecture was shown in Figure 2. Xilinx introduced the 

first FPGA family, called the XC2000 series, in about 1985 and now offers three more 



 

 

 

generations: XC3000, XC4000, and XC5000. Although the XC3000 devices are still widely 

used, we will focus on the more recent and more popular XC4000 family. We note that XC5000 

is similar to XC4000, but has been engineered to offer similar features at a more attractive price, 

with some penalty in speed. We should also note that Xilinx has recently introduced an FPGA 

family based on anti-fuses, called the XC8100. The XC8100 has many interesting features, but 

since it is not yet in widespread use, we will not discuss it here. The Xilinx 4000 family devices 

range in capacity from about 2000 to more than 15,000 equivalent gates. 

 

 
 

Figure 18 - Xilinx XC4000 Configurable Logic Block (CLB). 

The XC4000 features a logic block (called a Configurable Logic Block (CLB) by Xilinx) that 

is based on look-up tables (LUTs). A LUT is a small one bit wide memory array, where the 

address lines for the memory are inputs of the logic block and the one bit output from the memory 

is the LUT output. A LUT with K inputs would then correspond to a 2K x 1 bit memory, and can 

realize any logic function of its K inputs by programming the logic function’s truth table directly 

into the memory. The XC4000 CLB contains three separate LUTs, in the configuration shown in 

Figure 18. There are two 4-input LUTS that are fed by CLB inputs, and the third LUT can be used 



 

 

 

in combination with the other two. This arrangement allows the CLB to implement a wide range 

of logic functions of up to nine inputs, two separate functions of four inputs or other possibilities. 

Each CLB also contains two flip-flops. 

Toward the goal of providing high density devices that support the integration of entire 

systems, the XC4000 chips have “system oriented” features. For instance, each CLB contains 

circuitry that allows it to efficiently perform arithmetic (i.e., a circuit that can implement a fast 

carry operation for adder-like circuits) and also the LUTs in a CLB can be configured as 

read/write RAM cells. A new version of this family, the 4000E, has the additional feature that the 

RAM can be configured as a dual port RAM with a single write and two read ports. In the 4000E, 

RAM blocks can be synchronous RAM. Also, each XC4000 chip includes very wide AND-

planes around the periphery of the logic block array to facilitate implementing circuit blocks such 

as wide decoders. 

 
Besides logic, the other key feature that characterizes an FPGA is its interconnect structure. 

The XC4000 interconnect is arranged in horizontal and vertical channels. Each channel contains 

some number of short wire segments that span a single CLB (the number of segments in each 

channel depends on the specific part number), longer segments that span two CLBs, and very long 

segments that span the entire length or width of the chip. Programmable switches are available 

(see Figure 5) to connect the inputs and outputs of the CLBs to the wire segments, or to connect 

one wire segment to another. A small section of a routing channel representative of an XC4000 

device appears in Figure 19. The figure shows only the wire segments in a horizontal channel, and 

does not show the vertical routing channels, the CLB inputs and outputs, or the routing switches. 

An important point worth noting about the Xilinx interconnect is that signals must pass through 

switches to reach one CLB from another, and the total number of switches traversed depends on 

the particular set of wire segments used. Thus, speed-performance of an implemented circuit 

depends in part on how the wire segments are allocated to individual signals by CAD tools. 



 

 

 

 

Figure 19 - Xilinx XC4000 Wire Segments. 

 

 

Altera FLEX 8000 and FLEX 10000 FPGAs 
 

Altera’s FLEX 8000 series consists of a three-level hierarchy much like that found in CPLDs. 

However, the lowest level of the hierarchy consists of a set of lookup tables, rather than an SPLD- 

like block, and so the FLEX 8000 is categorized here as an FPGA. It should be noted, however, 

that FLEX 8000 is a combination of FPGA and CPLD technologies. FLEX 8000 is SRAM-based 

and features a four-input LUT as its basic logic block. Logic capacity ranges from about 4000 

gates to more than 15,000 for the 8000 series. 

 
The overall architecture of FLEX 8000 is illustrated in Figure 20. The basic logic block, 

called a Logic Element (LE) contains a four-input LUT, a flip-flop, and special-purpose carry cir- 

cuitry for arithmetic circuits (similar to Xilinx XC4000). The LE also includes cascade circuitry 

that allows for efficient implementation of wide AND functions. Details of the LE are illustrated 

in Figure 21. 

 
In the FLEX 8000, LEs are grouped into sets of 8, called Logic Array Blocks (LABs, a term 

borrowed from Altera’s CPLDs). As shown in Figure 22, each LAB contains local interconnect 

and each local wire can connect any LE to any other LE within the same LAB. Local interconnect 

 



 

 

 

 

Figure 20 - Architecture of Altera FLEX 8000 FPGAs. 

 

 

Figure 21 - Altera FLEX 8000 Logic Element (LE). 



 

 

 

 

 

Figure 22 - Altera FLEX 8000 Logic Array Block (LAB). 

 
 

also connects to the FLEX 8000’s global interconnect, called FastTrack. FastTrack is similar to 

Xilinx long lines in that each FastTrack wire extends the full width or height of the device. How- 

ever, a major difference between FLEX 8000 and Xilinx chips is that FastTrack consists of only 

long lines. This makes the FLEX 8000 easy for CAD tools to automatically configure. All Fast- 

Track wires horizontal wires are identical, and so interconnect delays in the FLEX 8000 are more 

predictable than FPGAs that employ many smaller length segments because there are fewer 

programmable switches in the longer paths. Predictability is furthered aided by the fact that 

connections between horizontal and vertical lines pass through active buffers. 

The FLEX 8000 architecture has been extended in the state-of-the-art FLEX 10000 family. 

FLEX 10000 offers all of the features of FLEX 8000, with the addition of variable-sized blocks of 

SRAM, called Embedded Array Blocks (EABs). This idea is illustrated in Figure 23, which shows 

that each row in a FLEX 10000 chip has an EAB on one end. Each EAB is configurable to serve 

as an SRAM block with a variable aspect ratio: 256 x 8, 512 x 4, 1K x 2, or 2K x 1. In addition, an 

EAB can alternatively be configured to implement a complex logic circuit, such as a multiplier, by 



 

 

 

employing it as a large multi-output lookup table. Altera provides, as part of their CAD tools, 

several macro-functions that implement useful logic circuits in EABs. Counting the EABs as 

logic gates, FLEX 10000 offers the highest logic capacity of any FPGA, although it is hard to 

provide an accurate number. 

 
 
 

Figure 23 - Architecture of Altera FLEX 10K FPGAs. 

 

AT&T ORCA FPGAs 
 

AT&T’s SRAM-based FPGAs feature an overall structure similar to that in Xilinx FPGAs, and is 

called Optimized Reconfigurable Cell Array (ORCA). The ORCA logic block is based on LUTs, 

containing an array of Programmable Function Units (PFUs). The structure of a PFU is shown in 

Figure 24. A PFU possesses a unique kind of configurability among LUT-based logic blocks, in 

that it can be configured in the following ways: as four 4-input LUTs, as two 5-input LUTs, and 

as one 6-input LUT. A key element of this architecture is that when used as four 4- input 

LUTs, several of the LUTs’ inputs must come from the same PFU input. While this reduces the 



 

 

 

apparent functionality of the PFU, it also significantly reduces the cost of the wiring associ- ated 

with the chip. The PFU also includes arithmetic circuitry, like Xilinx XC4000 and Altera FLEX 

8000, and like Xilinx XC4000 a PFU can be configured as a RAM block. A recently announced 

version of the ORCA chip also allows dual-port and synchronous RAM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24 - AT&T Programmable Function Unit (PFU). 

 

 
 

ORCA’s interconnect structure is also different from those in other SRAM-based FPGAs. 

Each PFU connects to interconnect that is configured in four-bit buses. This provides for more 

efficient support for “system-level” designs, since buses are common in such applications. The 

ORCA family has been extended in the ORCA 2 series, and offers very high logic capacity up to 

40,000 logic gates. ORCA 2 features a two-level hierarchy of PFUs based on the original ORCA 

architecture. 

 

LUT 

 

LUT 

 

LUT 

 

LUT 

 

 

 

 

 

 

 

 

s
w

it
c
h
 m

a
tr

ix
 



 

 

 

 

Actel FPGAs 
 

In contrast to FPGAs described above, the devices manufactured by Actel are based on anti- 

fuse technology. Actel offers three main families: Act 1, Act 2, and Act 3. Although all three 

generations have similar features, this paper will focus on the most recent devices, since they are 

apt to be more widely used in the longer term. Unlike the FPGAs described above, Actel devices 

are based on a structure similar to traditional gate arrays; the logic blocks are arranged in rows 

and there are horizontal routing channels between adjacent rows. This architecture is illustrated 

in Figure 25. The logic blocks in the Actel devices are relatively small in comparison to the 

LUT- based ones described above, and are based on multiplexers. Figure 26 illustrates the logic 

block in the Act 3 and shows that it comprises an AND and OR gate that are connected to a 

multiplexer- based circuit block. The multiplexer circuit is arranged such that, in combination 

with the two logic gates, a very wide range of functions can be realized in a single logic block. 

About half of the logic blocks in an Act 3 device also contain a flip-flop. 

 

Figure 25 - Structure of Actel FPGAs. 



 

 

 

 

 

Figure 26 - Actel Act 3 Logic Module. 

 

As stated above, Actel’s interconnect is organized in horizontal routing channels. The 

channels consist of wire segments of various lengths with antifuses to connect logic blocks to 

wire segments or one wire to another. Also, although not shown in Figure 25, Actel chips have 

vertical wires that overlay the logic blocks, for signal paths that span multiple rows. In terms of 

speed-performance, it would seem probable that Actel chips are not fully predictable, because the 

number of antifuses traversed by a signal depends on how the wire segments are allocated during 

circuit implementation by CAD tools. However, Actel provides a rich selection of wire segments 

of different length in each channel and has developed algorithms that guarantee strict limits on 

the number of antifuses traversed by any two-point connection in a circuit which improves speed-

performance significantly. 

 

Quicklogic pASIC FPGAs 
 

The main competitor for Actel in antifuse-based FPGAs is Quicklogic, whose has two 

families of devices, called pASIC and pASIC-2. The pASIC-2 is an enhanced version that has 

only recently been introduced, and will not be discussed here. The pASIC, as illustrated in Figure 

27, has similarities to several other FPGAs: the overall structure is array-based like Xilinx 

FPGAs, its logic blocks use multiplexers similar to Actel FPGAs, and the interconnect consists of 

only long



 

 

 

 

Figure 27 - Structure of Quicklogic pASIC FPGA. 

Quicklogic’s antifuse structure, called ViaLink, is illustrated on the left-hand side of Figure 

27. It consists of a top layer of metal, an insulating layer of amorphous silicon, and a bottom 

layer of metal. When compared to Actel’s PLICE antifuse, ViaLink offers a very low on-

resistance of about 50 ohms (PLICE is about 300 ohms) and a low parasitic capacitance. 

Figure 27 shows that ViaLink antifuses are present at every crossing of logic block pins and 

interconnect wires, providing generous connectivity. pASIC’s multiplexer-based logic block is 

depicted in Fig 28. It is more complex than Actel’s Logic Module, with more inputs and wide 

(6-input) AND-gates on the multiplexer select lines. Every logic block also contains a flip-

flops. 

 
 

QS 

A1   A2

B1 

B2 

C1 

C2 

D1 

D2 

E1 

E2 

F

1 

F

2 

F

3 

F

4 

F

AZ 

OZ 
 

 
 

QZ 

 
 

 

NZ 

FZ 

D S Q 

 



 

 

 

Figure 28 - Quicklogic (Cypress) Logic Cell. 

 

Applications of FPGAs 
 

FPGAs have gained rapid acceptance and growth over the past decade because they can be 

applied to a very wide range of applications. A list of typical applications includes: random 

logic, integrating multiple SPLDs, device controllers, communication encoding and filtering, 

small to medium sized systems with SRAM blocks, and many more. 

Other interesting applications of FPGAs are prototyping of designs later to be 

implemented in gate arrays, and also emulation of entire large hardware systems. The former 

of these applications might be possible using only a single large FPGA (which corresponds to 

a small Gate Array in terms of capacity), and the latter would entail many FPGAs connected 

by some sort of interconnect; for emulation of hardware, Quick Turn [Wolff90] (and others) 

has developed products that comprise many FPGAs and the necessary software to partition 

and map circuits. 

Another promising area for FPGA application, which is only beginning to be developed, is 

the usage of FPGAs as custom computing machines. This involves using the programmable 

parts to “execute” software, rather than compiling the software for execution on a regular 

CPU.  

POST MCQ: 

1. Which clock is preferred in storage devices? 

a) single phase overlapping clock signal 

b) single phase non overlapping clock signal 

c) two phase overlapping clock signal 

d) two phase non overlapping clock signal 

2. Reading a cell is a _______ operation. 

a) constructive 

b) destructive 

c) semi constructive 

d) semi destructive 

3. Which method is used to determine structural defects? 

a) deterministic test pattern 

b) algorithmic test pattern 

c) random test pattern 

d) exhaustive test pattern 

4. Which method is used for external functional testing? 

a) exhaustive test pattern method 

b) pseudo-exhaustive test pattern method 



 

 

 

c) random test pattern method 

d) pseudo-random test pattern method 

5. The electrical behaviour of a circuit is given using 

a) design rules 

b) floor plan 

c) structures and layouts 

d) mathematical modelling 

 

6.  Which among the following is a process of transforming design entry information of the 

circuit into a set of logic equations? 

a. Simulation 

b. Optimization 

c. Synthesis 

d. Verification 

7. Which among the following is an output generated by synthesis process? 

a. Attributes & Library 

b. RTL VHDL description 

c. Circuit constraints 

d. Gate-level net list 

8. In fusible link technologies, the undesired fuses are removed by the pulse application of 

_____voltage & current to device input. 

a. Low 

b. Moderate 

c. High 

d. All of the above 

9. An Antifuse programming technology is predominantly associated with _____. 

a. SPLDs 

b. FPGAs 

c. CPLDs 

d. All of the above 

 

TEXT BOOKS 

1. Neil Weste and Kamran Eshraghian “Principles of CMOS VLSI Design “- Addison Wesley, 

1998.. 

2. Charles H Roth, Jr. “Digital Systems Design using VHDL”- Thomson Learning, 2001.  

 
REFERENCE BOOKS 

1. VLSI Design Principles- John P. Uyemura, John Wiley,2002 

2. E. Fabricious , Introduction to VLSI design, McGraw-Hill 1990 

3. Wayne Wolf, Modern VLSI Design, Pearson Education 2003A. Anand Kumar, “Switching 
Theory and Logic Design” – PHI, 2nd Edition 

 

 



 

 

 

 


	(For Students admitted from 2014 onwards)
	AIM
	Objectives :
	Outcome:

	UNIT I INTRODUCTION TO VLSI AND MOS TRANSISTOR THEORY (9 Hours)
	UNIT II CMOS PROCESSING TECHNOLOGY AND LAYOUTS (9 Hours)
	UNIT III        MOS CIRCUIT PERFORMANCE AND CMOS LOGIC CIRCUITS (9 Hours)
	UNIT IV SUB SYSTEM DESIGN, AND TESTING (9 Hours)
	UNIT V  PROGRAMMABLE LOGIC’S       (9 Hours)
	COURSE OUTCOME
	TEXT BOOKS
	REFERENCE BOOKS
	EVOLUTION OF IC TECHNOLOGIES:
	MOS (Metal Oxide Silicon) Transistor History
	Levels of Integration:
	Moore’s Law

	1. MOS TRANSISTOR THEORY
	Two types of transistors
	MOS TRANSISTOR AS SWITCHES - NMOS AND PMOS SWITCHES
	CMOS LOGIC AND ITS FEATURES
	CMOS Logic Gates
	Combinational Logic
	NAND Gate
	NOR Gate
	Compound Gates
	Multiplexers
	Memory-Latches and Registers

	2. NMOS ENHANCEMENT TRANSISTOR
	Long-Channel I-V Characteristics & MOS device design equations (First order effects)
	THRESHOLD VOLTAGE
	BODY EFFECT OF MOS

	3. MOS INVERTERS
	CMOS INVERTER TRANSFER CHARACTERISTICS
	Beta Ratio Effects
	NOISE MARGIN
	NMOS INVERTER
	Principle of Operation
	PSEUDO-NMOS INVERTER
	BI-CMOS INVERTER
	Features of BICMOS gates:
	CMOS TRANSMISSION GATE

	CONCLUSION:
	1. SILICON SEMICONDUCTOR FABRICATION TECHNOLOGY:
	FABRICATION FORMS -NMOS:

	P-WELL PROCESS:

	Circuit Design Process
	1 Encodings for CMOS process:
	2 Encoding for BJT and MOSFETs:

	NMOS and CMOS Design style:
	1 Orbit 2μm CMOS process:
	2. CMOS NAND & NOR GATES SCHEMATIC
	GENERAL LAYOUT GUIDELINES
	LAYOUT OPTIMIZATION FOR PERFORMANCE
	MULTIPLEXER:
	SCALING OF MOS DEVICES
	CONCLUSION:
	SHEET RESISTANCE:
	DISTRIBUTED RC EFFECTS
	Interconnect Resistance Estimation
	Empirical delay model:
	2. STAGE RATIO
	Transistor Gate Sizing
	STAGE RATIO FOR LARGER LOAD

	3. SIMPLE EXAMPLES OF COMBINATIONAL AND SEQUENTIAL CIRCUITS USING CMOS
	Static CMOS Design
	CMOS NAND GATE
	Design Consideration:
	CMOS NOR GATE
	Compound gates
	LATCHES AND REGISTERS

	CONCLUSION:
	GENERAL SYSTEM DESIGN
	General Considerations
	Some Solution
	Illustration of design processes
	DESIGN OF ALU SUBSYSTEMS
	ALU Performance Issues
	ADDERS
	Carry-Propagate Addition
	Carry-Ripple Adder
	Carry Generation and Propagation
	Carry-Skip Adder
	Carry-Lookahead Adder
	Carry-Select Adders
	MULTIPLIERS
	Array Multiplier

	2. MEMORIES
	STATIC RAM
	SRAM Cells
	Read Operation
	Write Operation
	Cell Stability
	Physical Design

	3. CONTROL LOGIC IMPLEMENTATION USING PLA’s
	General Design Procedure

	4. TESTING OF VLSI CIRCUITS
	Need for testing
	Fault Models
	Observability
	Controllability
	Repeatability
	Survivability
	Fault Coverage
	AUTOMATIC TEST PATTERN GENERATION (ATPG)
	DESIGN FOR TESTABILITY (DFT)
	Ad Hoc Testing
	SCAN BASED TECHNIQUE
	SELF-TEST APPROACHES: BUILT-IN SELF-TEST (BIST)
	Memory BIST

	CONCLUSION:




	Introduction to High-Capacity FPDs
	Definitions of Relevant Terminology
	Evolution of Programmable Logic Devices
	User-Programmable Switch Technologies
	Computer Aided Design (CAD) Flow for FPDs

	Overview of Commercially Available FPDs
	Commercially Available SPLDs
	Commercially Available CPLDs
	Altera CPLDs
	Advanced Micro Devices (AMD) CPLDs
	Lattice CPLDs
	Cypress FLASH370 CPLDs
	Xilinx XC7000 CPLDs
	Altera FLASHlogic CPLDs
	ICT PEEL Arrays
	Applications of CPLDs
	Commercially Available FPGAs
	Xilinx SRAM-based FPGAs
	Altera FLEX 8000 and FLEX 10000 FPGAs
	AT&T ORCA FPGAs
	Actel FPGAs
	Quicklogic pASIC FPGAs
	Applications of FPGAs
	TEXT BOOKS
	REFERENCE BOOKS



